首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(1):612-622
Considering the poor dispersion and inert ionic conduction ability of carbon nanotubes (CNTs), functionalization of CNTs is a critical issue for their application in polymer electrolyte membranes. Herein, CNTs were functionalized by the polyelectrolyte, chitosan (CS), via a facile noncovalent surface‐deposition method. The obtained CS‐coated CNTs (CS@CNTs) were then incorporated into the CS matrix and fabricated composite membranes. The CS coating can enhance the compatibility between CNTs and the matrix, thus ensuring the homogenous dispersion of CS@CNTs and effectively improved the mechanical properties of the composites. Moreover, the CS coating can make CS@CNTs act as an additional proton‐conducting pathway through the membranes. The CS/CS@CNTs‐1 composite shows the highest proton conductivity of 3.46 × 10−2 S cm−1 at 80°C, which is about 1.5‐fold of the conductivity of pure CS membrane. Consequently, the single cell equipped with CS/CS@CNTs‐1 membrane exhibits a peak power density of 47.5 mW cm−2, which is higher than that of pure CS (36.1 mW cm−2).  相似文献   

2.
We report the preparation of phosphoric acid doped poly(2,5-benzimidazole) (ABPBI) membranes for PEMFC by simultaneously doping and casting from a poly(2,5-benzimidazole)/phosphoric acid/methanesulfonic acid (MSA) solution. The evaporation of MSA yields a very homogeneous membrane having a better controlled composition, avoiding the use of solvent-intensive procedures. Membranes have been prepared with contents of up to 3.0H3PO4 molecules per ABPBI repeating unit. These membranes achieve a maximum conductivity of 1.5 × 10−2 S cm−1 at temperatures as high as 180 °C in dry conditions. These ABPBI membranes are more conveniently prepared than those conventionally formed and doped in separate steps while featuring comparable conductivities (ABPBI × 2.7H3PO4 prepared by the soaking method showed a conductivity of 2.5 × 10−2 S cm−1 at 180 °C in dry conditions).  相似文献   

3.
Anhydrous conductive membranes composing of a composite of chitosan (CS) and ionic liquids with symmetrical carboxyl groups were explored. Scanning electron microscope images revealed that porous composite membranes could be obtained by combining CS with different amounts of 1,4‐bis(3‐carboxymethyl‐imidazolium)‐1‐yl butane chloride ([CBIm]Cl). Fourier transform infrared and proton nuclear magnetic resonance confirmed that the formation of ammonium salts after CS was combined with [CBIm]Cl. The thermal property of CS–ionic liquid composite membranes was studied through thermogravimetric analysis. The anhydrous ionic conductivities of CS–[CBIm]X (X = Cl, Ac, BF4, and I) composite membranes were measured using ac impedance spectroscopy at room temperature in N2 atmosphere. The conductivities (0.4–0.7 × 10?4 Scm?1), found to be in the same range as semiconductors, were significantly higher than those of pure CS membrane (<10?8 Scm?1). In addition, the anhydrous conductivity of composite membrane based on CS–[CBIm]I at room temperature reached a level as high as 0.91 × 10?2 Scm?1 when iodine was doped. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A novel cellulose acetate-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer was prepared via free radical polymerization for the first time. The chemical structure of the graft copolymer was confirmed using FT-IR, 1H NMR and EDX. The TGA and DSC investigated the thermal changes. Factors affecting the grafting process were studied and various grafting characteristic parameters such as grafting efficiency (%), grafting yield (%) and add-on value (%) were determined. Flexible membranes based on different graft copolymer compositions were fabricated by simple solution casting. Physicochemical properties including ion exchange capability (IEC), water uptake (WU) and proton conductivity (σ) were evaluated. These membranes demonstrated higher IEC, WU and conductivity than the pristine CA. The maximum proton conductivity of the CA-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer membrane (68%; Add-on %) was found to be 6.44 × 10−3 S/cm compared with 0.035 × 10−3 S/cm of the pristine CA. Thus, the appropriate graft copolymer composition will allow fine-tuning of the physical characteristics and led to several potential applications, such as polyelectrolyte fuel cells membranes or biodiesel production.  相似文献   

5.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

6.
Zinc and barium phosphate glasses show good proton conductivity at intermediate temperature around 200 °C. Infrared spectra and 1H magic angle spinning-nuclear magnetic resonance (MAS–NMR) spectra proposed that a 30 mol%ZnO-70 mol%P2O5 glass melted at 800 °C has a large amount of ‘mobile’ protons. The proton conductivity at 250 °C was measured to be 1 × 10−3 S/cm. A H2-air fuel cell using the ZnO–P2O5 glass electrolyte of 1.8 mm in thickness showed the maximum power density of 1.2 mW/cm2 at 200 °C.  相似文献   

7.
A facile and straightforward method was adopted to synthesize ZnCo2O4/graphene nanocomposite anode. In the first step, pure ZnCo2O4 nanoparticles were synthesized using urea-assisted auto-combustion synthesis followed by annealing at a low temperature of 400 °C. In the second step, in order to synthesize ZnCo2O4/graphene nanocomposite, the obtained pure ZnCo2O4 nanoparticles were milled with 10 wt% reduced graphene nanosheets using high energy spex mill for 30 s. The ZnCo2O4 nanoparticles, with particle sizes of 25–50 nm, were uniformly dispersed and anchored on the reduced graphene nanosheets. Compared with pure ZnCo2O4 nanoparticles anode, significant improvements in the electrochemical performance of the nanocomposite anode were obtained. The resulting nanocomposite delivered a reversible capacity of 1124.8 mAh g−1 at 0.1 C after 90 cycles with 98% Coulombic efficiency and high rate capability of 515.9 mAh g−1 at 4.5 C, thus exhibiting one of the best lithium storage properties among the reported ZnCo2O4 anodes. The significant enhancement of the electrochemical performance of the nanocomposite anode could be credited to the strong synergy between ZnCo2O4 and graphene nanosheets, which maintain excellent electronic contact and accommodate the large volume changes during the lithiation/delithiation process.  相似文献   

8.
Proton-conducting and methanol barrier properties of the proton exchange membrane (PEM), as well as the high cost of direct methanol fuel cell (DMFC) components, are the key determinants of the performance and commercialization of DMFCs. Therefore, this study aimed to develop cost- and performance-effective membranes based on sulphonated poly (vinyl chloride) (SPVC)/poly (2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) blends. Such membranes have been simply prepared by blending SPVC and PAMPS solutions, followed by solvent evaporation via casting. Interaction of SPVC with PAMPS was confirmed by different characterization techniques such as Fourier Transform Infra-red (FTIR) and Raman scattering spectroscopy in which the two characteristic absorption bands of sulfonic groups appeared at 1093 and 1219 cm−1 additionally, strong peaks at around 1656 cm−1 attributed to vibration of amide groups of PAMPS portion in the polymer blend. Furthermore, the interaction of SPVC with PAMPS improves the thermal properties along with ion exchange capacity in turn decreasing the methanol permeability through the membrane in comparison with the SPVC membrane. The IEC of PVC and Nafion 117 membranes were 1.25, 0.91 meq/g; respectively. And the maximum water uptake of PVC and Nafion 117 membranes were 75 and 65.44%; respectively. Methanol permeability value of 7.7 × 10−7 cm2/s which was noticeably lower than the corresponding value recorded for Nafion® (3.39 × 10−6 cm2/s). Therefore, these fabricated membranes can be considered a low-cost efficient candidate for use in DMFC, especially for its capability to resolve the methanol cross-over issue.  相似文献   

9.
Nafion-titanate nanotubes composite membranes were prepared through a casting process. With the addition of 5 wt.%, the nanotubes were homogenously distributed in Nafion solution. The formed composite membrane showed a comparable mechanical strength to Nafion membrane. The proton conductivity of the composite membrane without external humidification is higher than that of the Nafion membrane, reaching 0.034 Scm?1 and 0.01 Scm?1 at 100 °C and 120 °C, respectively. The improved proton conductivity was attributed to the great water retention ability of the doped nanotubes.  相似文献   

10.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

11.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

12.
Novel anhydrous polymeric proton conductors have been prepared from perfluorosulfonic acid ionomer with polymer solvent as supplying proton pathway through the segmental motion of polymer chains for polymer electrolyte fuel cell (PEFC) application. Since the membranes do not contain liquid-state acid or solvent, the membranes may promise more stable performances during the operation of PEFC. The Nafion-based anhydrous proton conductors showed maximum proton conductivity of about 4.0 × 10?3 S cm?1 at 130 °C under anhydrous condition. The mechanical properties of the membranes were enhanced by introducing H+-doped TiO2 nanoparticles without the conductivity degradation. In addition, the electrochemical properties of the membrane electrode assembly (MEA) employing the anhydrous membrane as ionomer have been investigated, showing stable open circuit voltages (OCVs) over 0.9 V under non-humidified condition.  相似文献   

13.
In this work, for the first time, a simple casting process is used to create an efficient and highly stable cellulose acetate (CA) based membrane with dispersive graphene oxide nanosheets (GO). The successful preparation of GO and its integration into the polymer matrix was verified by structural and morphological characterization using FTIR, TEM, SEM, and XRD. Furthermore, the impact of GO nanosheets and their content on the composite membranes' physicochemical properties is investigated. The water uptake increased up to 24% as the concentration of GO increased, while the ion exchange capacity increased threefold compared to the blank CA membrane. Additionally, increasing GO loading also enhanced the proton conductivity and the tensile strength of the developed membranes. The homogeneous CA/GO nanocomposite membranes with GO filler amounts ranging from 0.3 to 0.8 wt% were found to have excellent proton conductivity varying from 9.2 to 15.5 mS/cm compared to 6.94 mS/cm for Nafion 212. Further, as systematically studied and compared in membrane performance, the overall power density of the membrane electrode assembly (MEA) with GO content was increased up to 519 mW/cm2 compared to 401 mW/cm2 for Nafion 212 with significantly lower cost. The encouraging outcomes of this study pave the way for a simple, environmentally friendly, and cost-effective approach for developing nanocomposite membranes for application in PEMFCs.  相似文献   

14.

1-Allyl-3-methylimidazolium chloride [AMIM]Cl hybrid perfluorosulfonic acid (PFSA) composite electrolyte membrane was prepared and characterized by TG and FTIR technique. The conductivity was measured using AC impedance method. The results showed that when raised from 20 to 90 °C, the conductivity of composite membrane was increased from 4.50 × 10−6 to 1.34 × 10−5 S cm−1, before and after the modification of triethylamine, the thermal stability of composite membrane was not changed, but the TEA-PFSA with [AMIM]Cl reactivity was a little difference. However, the heat resistance of composite membrane was significantly enhanced compared with that of PFSA membrane, the peak temperature of composite membrane almost disappeared in first stage, and offset to the high-temperature zone. When heated at 350 °C, the decomposition rate of PFSA, 10%[AMIM]Cl-PFSA and 10%[AMIM]Cl-TEA-PFSA membrane was 13.71, 3.67 and 1.26%, respectively. If the decomposition process follows isothermal first-order reaction and the conversion rate α is 10%, the activation energy E α of the composite membrane is 97.4 kJ mol−1. Besides, the isothermal lifetime of composite membrane was also measured.

  相似文献   

15.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

16.
When complexed with alkaline such as potassium hydroxide, sodium hydroxide or lithium hydroxide, films (40 μm thick) of polybenzimidazole (PBI) show conductivity in the 5 × 10−5–10−1 S/cm−1 range, depending on the type of alkali, the time of immersion in the corresponding base bath and the temperature of immersion. It has been shown that PBI has a remarkable capacity to concentrate KOH, even in an alkaline bath of concentration 3 M. The highest conductivity of KOH-doped PBI (9×10−2 S cm−1) at 25°C obtained in this work is higher than the we had obtained previously as optimum values for H2SO4-doped PBI (5 × 10−2 S cm−1 at 25°C) and H3PO4-doped PBI ( 2 × 10−3 S cm−1 at 25°C). PEMFCs based on an alkali-doped PBI membrane were demonstrated, and their characteristics exhibited the same performance as those of PEMFCs based on Nafion® 117. Their development is currently under active investigation.  相似文献   

17.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

18.
Proton conductive membranes were prepared as thin films of about 10 μm thickness by an ion beam assisted plasma polymerization process. Argon ions were generated in a high frequency plasma and accelerated towards a PTFE target where CF fragments were released as a consequence of the ion impact. Various sulfur components (SO2, CF3SO3H or ClSO3H) were added to achieve proton conductivity by the formation of sulfonic acid groups. The CF fragments combined with the sulfur components to form a coherent thin film on a substrate. Mass spectrometric investigations revealed, however, that sulfur oxygen compounds were extremely delicate towards reduction to sulfur carbon compounds like CS2 or SCF2. The best membrane conductivities (>10−4 S/cm) and highest ion exchange capacities (0.15 mmol/g) were achieved with chlorosulfonic acid involved in the plasma polymerization process. Ultra-thin layers of these of these plasma polymers (ca. 300 nm) were subsequently deposited onto Nafion® membranes in order to suppress methanol permeation for a potential application in a direct methanol fuel cell (DMFC). The ratio of proton conductivity and methanol diffusion coefficient was employed for an assessment of the transport characteristics of the coated membrane. Diffusion coefficients were determined in a flow cell coupled to a mass spectrometer. The plasma polymer coating decreased both the methanol permeation and the proton conductivity. With a proton conductive plasma polymer coating the decrease of methanol diffusion could outweigh the loss of proton conductivity. Plasma coating offers a way to suppress methanol crossover in DMFCs and to maintaining the proton conductivity.  相似文献   

19.
A polymeric hybrid nanocomposite, namely polythiophene tin(IV)phosphate (PTh–SnP), was expediently synthesized by incorporating polythiophene (PTh) in tin phosphate (SnP) to enhance the conducting behavior and sorption of heavy metal ions by porous polymeric cation exchanger. Composite was characterized by Fourier Transform-Infra Red and Transmission Electron Microscopy. The dc electrical conductivity studies carried out on the composite, showed conductivity within the range of 4.0 × 102–1.0 × 103 S/cm1; measured by a 4-in line-probe dc electrical conductivity measuring technique. Ion-exchange kinetics for few divalent metal ions was evaluated by particle diffusion-controlled ion-exchange phenomenon at four different temperatures. The particle diffusion mechanism is confirmed by the linear τ (dimensionless time parameter) vs t (time) plots. The exchange processes thus controlled by the diffusion within the exchanger particle for the systems studies herein. Some physical parameters like self-diffusion coefficient (D0), energy of activation (Ea) and entropy (ΔS°) have been evaluated under conditions favoring a particle diffusion-controlled mechanism.  相似文献   

20.
《Solid State Sciences》2012,14(6):673-676
Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10−6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10−7 S/m) and TiO2 thin film in air (5 × 10−9 S/m) and in vacuum (8.8 × 10−10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号