首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The details of stratigraphic units and structures making up six coronae and their regional surroundings on Venus were examined using full resolution Magellan images and stereoscopic coverage. Altimetry and stereoscopic coverage were essential in establishing the local stratigraphic relationships and the timing of corona-related topography. The degree of preservation of signatures of earlier corona-related activities and the scale of later corona-related activities vary significantly from corona to corona. We compared the geologic sequence in each corona to regional and global stratigraphic units, placing the coronae in the broader context of the geologic history of Venus. The results of this study were compared with earlier analyses bringing the total number of corona considered to about 15% of the total corona population. We found that corona started forming soon after tessera formation and largely spanned a significant part of the subsequent geologic history of Venus, over about 200–400 million years. Topographic annulae were initiated in early post-tessera time but were largely completely formed by the time of emplacement of regional plains with wrinkle ridges. Some coronae ceased activity by this time, while others continued until closer to the present, although showing evidence of waning activity. Coronae-associated volcanism dominated many coronae during this later stage. Convincing evidence of pre-regional plains corona- related volcanism was not found in the population examined here. We conclude that coronae formed in a two stage process; the first stage (tectonic phase) involved the annular warping of early extensive stratigraphic units of volcanic origin and the second (volcanic phase) involved coronae-related lava flow activity and local fracturing. For the vast majority of coronae, the first tectonic phase was largely complete prior to the emplacement of the regional plains (Pwr, plains with wrinkle ridges). The vast majority of corona-related volcanic activity (emplacement of Pl, lobate flows) occurred subsequent to the emplacement of regional plains. We found no evidence of coronae initiation in substantially later periods of the observed history of Venus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.  相似文献   

3.
The geologic/morphologic map of the northern mid-to-high latitudes of Venus prepared by a Soviet science team on the basis of Venera 15/16 mission radar image coverage is analyzed and used to define six discrete assemblages of geologic/morphologic units that have well-defined geographic distributions. These assemblages have distinctive and differing geological and tectonic expressions and include: Plains Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, and a high concentration of small volcanic domes; Plains-Corona Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, at least ten coronae structures concentrated in the northern half of the region, and at least five large volcanoes, generally concentrated in the southern and western half of the region; Plains-Ridge Belt Assemblage - which is dominated by lowland smooth plains and lesser amounts of lowland rolling plains, major occurrences of ridge belts in a distinctive fan-shaped pattern, and very minor and patchy occurrences of tessera; Plains-Corona-Tessera Assemblage - which is dominated by approximately equal amounts of lowland smooth plains and lowland rolling plains, at least five coronae concentrated in the northern part of the region, a small number of large volcanoes, also in the northern part of the region, and numerous small patches of tesserae scattered throughout, and the highest abundance of small volcanic domes observed in the northern hemisphere; Tessera-Ridge Belt Assemblage — which is dominated by a few large areas (Fortuna, Laima, Tellus) and several smaller areas (Dekla, Meni) of tesserae, ridge belts generally arrayed in an angular and often orthogonal pattern different from the fan-shaped pattern of the Plains-Ridge Belt Assemblage, lowland rolling plains and lesser amounts of lowland smooth plains, and an upland rise (Bell Regio); Tessera-Mountain Belt Assemblage - which is centered on the two volcanoes Colette and Sacajawea in Lakshmi Planum, and characterized by the peripheral mountain belt/tessera pairs, with the tessera on the outboard side: Danu/Clotho (S), Akna/Atropos (W), Freyja/ltzpapalotl (N), and Maxwell/Fortuna (E).The distribution and characteristics of assemblages demonstrate that vertical and horizontal tectonic forces are operating on the crust and lithosphere of Venus in different ways in specific localized areas. Alternative models are outlined for the origin of each assemblage and the relationship between assemblages, and important unresolved questions are identified. A key to the further understanding of these assemblages is the origin of ridge belts and tessera terrain.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

4.
The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 × 1000 km each, could be characterized using only 10 different terrain units and six types of structures. These units and structures form a major stratigraphic and geologic sequence (from oldest to youngest): 1) tessera terrain; 2) densely fractured terrains associated with coronae and in the form of remnants among plains; 3) fractured and ridged plains and ridge belts; 4) plains with wrinkle ridges; 5) ridges associated with coronae annulae and ridges of arachnoid annulae which are contemporary with wrinkle ridges of the ridged plains; 6) smooth and lobate plains; 7) fractures of coronae annulae, and fractures not related to coronae annulae, which disrupt ridged and smooth plains; 8) rift-associated fractures; 9) craters with associated dark paraboloids, which represent the youngest 10% of the Venus impact crater population (Campbellet al., 1992), and are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; surficial streaks and patches are approximately contemporary with dark-paraboloid craters.Mapping of such units and structures in 36 randomly distributed large regions (each 106 km2) shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5–1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. In the terminal stages of tessera formation, extensive parallel linear graben swarms representing a change in the style of deformation from shortening to extension were formed on the tessera and on some volcanic plains that were emplaced just after (and perhaps also during the latter stages of the major compressional phase of tessera emplacement. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus (less than 50 m.y. ago) are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits.Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis. For example, we are uncertain whether this stratigraphic sequence corresponds to geologic events which were generally synchronous in all the sites and all around the planet, or whether the sequence is simply a typical sequence of events which occurred in different places at different times. In addition, it is currently unknown whether the present state represents a normal consequence of the general thermal evolution of Venus (and is thus representative of the level of geological activity predicted for the future), or if Venus, has been characterized by a sequence of periodic global changes in the composition and thermal state of its crust and upper mantle (in which case, Venus could in the future return to levels of deformation and resurfacing typical of the period of tessera formation).  相似文献   

5.
Improved measurements of the target elevations of 885 impact craters on Venus indicate that they are nearly random with respect to elevation. Although a slight deficit of craters at high elevations and an excess at low elevations is observed, the differences are marginally significant. Using a high-resolution digital map and database of all major volcanic, tectonic and impact features, we examine the distribution of impacts within volcanic and tectonic features, and the distribution of volcanism and tectonism with elevation. We show that the observed crater hypsometry results from resurfacing at higher elevations by volcanic and tectonic features superimposed on less active plains.The distribution of impacts in the map units has two distinct patterns: (1) the plains and shield fields (70%) have high crater densities and low proportions of tectonized or embayed craters; and (2) the remaining volcanic and tectonic features (30%) have low crater densities and high proportions of modified craters. The plains and shield fields appear to represent a much lower level of resurfacing activity. Simple area-balance calculations indicate that resurfacing at higher elevations by tectonic and volcanic features plausibly explains the observed crater hypsometry. However, the subtlety of the effects suggests that either (1) little resurfacing has occurred during the period of crater accumulation, or (2) resurfacing acts almost equally at all elevations. The apparent low activity of the plains and their abundance at lower elevations makes it unlikely that resurfacing is balanced with respect to elevation. It appears that the plains have been mostly quiescent since their emplacement, and that subsequent resurfacing occurs mostly in the highlands as a result of volcanism, corona formation, and rifting. We estimate that since the end of plains emplacement about 14% of Venus has been resurfaced by volcanism and about 6% by tectonic deformation.  相似文献   

6.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

7.
The composition and detailed morphology of dome-shaped features located in western Arcadia Planitia and just west of Utopia Planitia were examined in this study utilizing data from Mars Reconnaissance Orbiter and Mars Odyssey sensors. The domes have diameters averaging 1.5 km and heights averaging 160 m, and are generally dark-toned, although some are lighter toned or have split dark and light-toned surfaces. The domes are surrounded by annular deposits comprising, with increasing distance from the domes, dark-toned aprons, light-toned aureoles, and dark-toned aureoles. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data over several areas in the western Arcadia region show that spectra from the flanks of several domes have 1 and 2 μm absorption features consistent with the presence of olivine and a high-Ca pyroxene, nominally augite. Modified Gaussian Model (MGM) analysis of these spectra indicates Fe-rich olivine compositions. The tops of domes and the aprons surrounding many domes have negative sloping flat spectra in the near infrared, which is consistent with tachylite-rich, glassy compositions. High Resolution Imaging Science Experiment (HiRISE) images over several domes indicate that relatively high thermal inertia values associated with the tops of domes can be attributed to boulder strewn surfaces. HiRISE images also reveal that light-toned aureoles around domes consist of crenulated ground resembling “brain terrain” textures previously described for ice-rich concentric crater fill elsewhere on the northern plains. The plains surrounding the domes also display lineations that are interpreted to be lava channels or tubes. The combination of volcanic and ice-related features are consistent with the domes having formed as cryptodomes in the near sub-surface. We suggest that the domes could be basaltic in composition if the magmas were degassed and/or highly crystallized, and thus more viscous than typical basaltic magmas. The intrusion of these magmas into an ice-rich horizon would have produced a pervasively jointed chilled margin on the domes, which, once the domes were exposed, would have mechanically weathered to form the dark aprons. The domes could have served as local centers for ice accumulation during periods of high orbital obliquity, which ultimately would have led to the formation of the “brain terrain” surrounding the features. The domes represent late stage volcanic products on the northern plains of Mars and associated features provide more evidence for the role that ice accumulation and modification has played in recent martian history.  相似文献   

8.
We analyze night-time near-infrared (NIR) thermal emission images of the Venus surface obtained with the 1-μm channel of the Venus Monitoring Camera onboard Venus Express. Comparison with the results of the Magellan radar survey and the model NIR images of the Beta-Phoebe region show that the night-time VMC images provide reliable information on spatial variations of the NIR surface emission. In this paper we consider if tessera terrain has the different NIR emissivity (and thus mineralogic composition) in comparison to the surrounding basaltic plains. This is done through the study of an area SW of Beta Regio where there is a massif of tessera terrain, Chimon-mana Tessera, surrounded by supposedly basaltic plains. Our analysis showed that 1-μm emissivity of tessera surface material is by 15–35% lower than that of relatively fresh supposedly basaltic lavas of plains and volcanic edifices. This is consistent with hypothesis that the tessera material is not basaltic, maybe felsic, that is in agreement with the results of analyses of VEX VIRTIS and Galileo NIMS data. If the felsic nature of venusian tesserae will be confirmed in further studies this may have important implications on geochemical environments in early history of Venus. We have found that the surface materials of plains in the study area are very variegated in their 1-μm emissivity, which probably reflects variability of degree of their chemical weathering. We have also found a possible decrease of the calculated emissivity at the top of Tuulikki Mons volcano which, if real, may be due to different (more felsic?) composition of volcanic products on the volcano summit.  相似文献   

9.
Abstract— The boundaries between the highly deformed tessera terrain and adjacent volcanic plains are primarily those of embayment, where the tessera are stratigraphically older than the plains. Previous studies show that <3% of these boundaries display evidence of tectonic tilting after the emplacement of the plains. One of these unusual boundaries is the western margin of Alpha Regio tessera, a zone ~ 100 km in width that separates the plains from the interior structures of Alpha. This zone is characterized by margin parallel, fine‐scale (1–5 km) fractures, graben, and ridges that truncate and postdate the broad‐scale (10–30 km) ridges and troughs of the interior of Alpha. The western margin is embayed by several volcanic plains units that are progressively tilted and deformed by graben with closer proximity to Alpha Regio. The earliest deformation of the plains consists of northeast‐trending graben ~1 km in width that are similar in morphology and spacing to graben that deform intratessera plains and plains at the eastern boundary of Alpha. Northwest‐trending graben then formed over an interval marked by the emplacement of two additional plains units; their similarity to northwest‐trending structures emanating from Eve corona and the Lada Terra rift suggests a possible genetic relationship. The tilting of the plains adjacent to western Alpha implies relative vertical movement of the margin, either uplift of tessera or downwarping of plains subsequent to the formation and relaxation of the interior of Alpha Regio. Subsidence of plains at this locale is supported by the presence of a basin to the west of Alpha surrounded by a fracture belt contiguous with western Alpha. Thus, the fractures and deformation at the western boundary of Alpha may be related to the formation of a basin to the west of Alpha with some influence from the northernmost extension of the Lada Terra rift. Such a basin is not present at a section along the eastern boundary of Alpha Regio, where the origin of tilted plains remains equivocal. We conclude that the deformation along the western margin of Alpha Regio is not directly related to the process of tessera formation but is an example of tessera modification and is consistent with the stratigraphic position of tessera as the oldest unit observed on Venus.  相似文献   

10.
Don E. Wilhelms 《Icarus》1976,28(4):551-558
The Mariner 10 television team has argued that extensive plains on Mercury were formed by volcanism and compared them with the demonstrably lunar maria. I believe, however, that in stratigraphic relations, surface morphology, and albedo contrast, the Mercurian plains more closely resemble the lunar light plains. These lunar plains were interpreted as volcanic on the basis of data comparable to that available to the Mariner 10 investigators but have been shown by the Apollo missions to be of impact origin. The plains on Mercury might also be formed of impact materials, perhaps of impact melt or other basin ejecta that behaved more like a fluid when emplaced that did lunar basin ejecta.  相似文献   

11.
New radar images obtained from the Arecibo Observatory (resolution 1.5–4.0 km) for portions of the southern hemisphere of Venus show that: the upland of Phoebe Regio contains the southern extension of Devana Chasma, a rift zone extending 4200 km south from Theia Mons and interpreted as a zone of extension; Alpha Regio, the only large region of tessera within the imaged area, is similar to tessera mapped elsewhere on the planet and covers a smaller percentage of the surface than that observed in the northern high latitudes; the upland made of Ushas, Innini and Hathor Montes consists of three distinct volcanic constructs; Themis Regio is mapped as an ovoid chain of radar-bright arcuate single and double ring structures, edifices and bright lineaments. This area is interpreted as a region of mantle upwelling and on the basis of apparent split and separated features, a zone of localized faulting and extension. Linear zones of deformation in Lavinia Planitia are characterized by lineament belts that are often locally elevated, are similar to ridge belts mapped in the northern high latitudes and are interpreted to be characterized mainly by compression; radar-bright lava complexes within Lavinia Planitia are unique to this part of the planet and are interpreted to represent areas of eruption of high volumes of extremely fluid lava; the upland of Lada Terra is bound to the north by a linear deformation zone interpreted as extensional, is characterized by large ovoids and coronae, is interpreted to be associated with an area of mantle upwelling, and is in contrast to the northern high latitude highland of Ishtar Terra. Regions of plains in the southern hemisphere cover about 78%; of the mapped area and are interpreted to be volcanic in origin. Located within the area imaged (10–78 S) are 52 craters interpreted to be of impact origin ranging from 8 to 157 km in diameter. On the basis of an overall crater density of 0.94 craters/106 km2, it is determined that the age of this part of the Venus surface is similar to the 0.3 to 1.0 billion year age calculated for the equatorial region and northern high latitudes. The geologic characteristics of the portion of the Venus southern hemisphere imaged by Arecibo are generally similar to those mapped elsewhere on the planet. This part of the planet is characterized by widespread volcanic plains, large volcanic edifices, and zones of linear belt deformation. The southern hemisphere of Venus differs from northern high latitudes in that tessera makes up only a small percentage of the surface area and the ovoid chain in Themis Regio is unique to this part of the planet. On the basis of the analysis presented here, the southern hemisphere of Venus is interpreted to be characterized by regions of mantle upwelling on a variety of scales (ovoids, region made up of Ushas, Innini and Hathor Montes), upwelling and extension (Themis Regio) and localized compression (lineament belts in Lavinia Planitia).  相似文献   

12.
George E. McGill 《Icarus》2004,172(2):603-612
A major ongoing controversy concerns the style of crustal evolution on Venus. At one extreme is a directional model that proposes a sequence of depositional and deformational events that occur at specific times in the evolution of the crust and that are global in extent. At the other extreme is a model that argues for different ages of these events in different places on the planet. A test of the directional model is here focused on whether wrinkle ridges formed at a single time in the recorded crustal history of Venus. Where sets of wrinkle ridges intersect it commonly is possible to determine that one set is older than the other. Also, the deformation responsible for wrinkle ridges is, in places, clearly progressive with respect to stratigraphic material units. These observations are not consistent with a specific single time for the formation of wrinkle ridges within the stratigraphic sequence. Within an area including about 1/3 of the surface of Venus 15% of craters that are younger than regional plains are older than wrinkle ridges, 85% are younger than wrinkle ridges. Taking 750 myr as a reasonable mean age for the regional plains, this implies that the mean age of wrinkle ridges is ∼110 myr younger than the mean age of plains. Solomon et al. (1999, Science 286, 87) propose that the emplacement of a large volume of plains lava would lead to a major atmospheric temperature increase. Their model predicts thermal stresses in the lithosphere that, at shallow depth, would reach peak compressive stresses in about 100 myr, a number very similar to the time lag between plains emplacement and wrinkle ridge formation indicated by the crater data. The thermal compressive stresses responsible for wrinkle ridges would be maintained at a level sufficient to deform basalt for at least 100 myr and possibly for as long as 350 myr. These time intervals are not really short compared to the mean age of the plains. Finally, because wrinkle ridges are demonstrably younger than the plains they deform, they cannot be related to the processes that formed the plains and thus should not be used to define a “plains with wrinkle ridges” unit.  相似文献   

13.
Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.  相似文献   

14.
《Planetary and Space Science》2007,55(14):2097-2112
We briefly describe the history of landings on Venus, the acquired geochemical data and their potential petrologic interpretations. We suggest a new approach to Venus landing site selection that would avoid the potential contamination by ejecta from upwind impact craters. We also describe candidate units to be sampled in both in situ measurement and sample return missions. For the in situ measurements, the “true” tessera terrain (tt) material is considered as the highest priority goal with the second priority given to transitional tessera terrain (ttt), shield plains (psh) and lobate plains (pl) materials. For the sample return mission, the material of regional plains with wrinkle ridges (pwr) is considered as the highest priority goal with the second priority given to tessera terrain (tt) material. Combining the desire to study materials of specific geologic units with the problem of avoiding potential contamination by ejecta from upwind impact craters, we have suggested several candidate landing sites for each of the geologic units. Although spacecraft ballistics and other constraints of specific mission profiles (VEP or others) may lead to the selection of different candidate sites, we believe that the approaches outlined in this paper can be helpful approach in optimizing mission science return.  相似文献   

15.
Crustal formation and evolution processes are of critical importance in the geochemical and thermal evolution of planets. As an aid to understanding these processes on Venus, we develop a general paradigm for: (1) the derivation of primary magmas, and (2) the range of possible conditions for remelting of crustal materials and the evolution of the products of remelting. We use as a basis for this paradigm the present knowledge of the bulk and surface composition, thermal structure, and surface geological and geochemical processes. For the range of conditions of derivation of primary magmas and crustal remelting, a wide range of magma types is possible, and no magma type can be arbitrarily excluded from consideration on Venus. We conclude that magmatic and volcanic activity on Venus, in its broadest sense, could be very similar to that on the Earth, although eruption styles are expected to vary due to environmental conditions (Head and Wilson, 1986). Major differences in magmatic and volcanic activity are likely to occur in two environments on Venus: (1) those analogous to terrestrial island arcs, where due to the absence of water, melts should be SiO2-undersaturated, and the more fluid melt products may produce widespread deposits of SiO2-poor ferrobasalts rather than more viscous SiO2-rich magmas and composite volcanoes, and (2) those in plains regions influenced by mantle plumes and hot spots, where highly picritic melts may periodically flood vast regions of the surface.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Academy of Science Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

16.
While low level shield volcanoes have formed on Venus, major volcanic structure formation in Ishtar Terra has been restricted to caldera formation. It is possible that the combination of compression tectonics and crustal thickening inhibits the amount of magma which reaches the surface in Ishtar Terra. In certain situations, coronae on Venus may form as undeveloped volcanic structures due to restricted magma rise in thick crustal areas.  相似文献   

17.
A number of Martian volcanoes, especially Ceraunius Tholus, Uranius Tholus, Uranius Patera, and Hecates Tholus, show morphological features strikingly different from those of shield volcanoes but analogous to those of terrestrial cones and composite volcanoes such as Barcena Volcano, Mexico. The most distinguishing overall features are steep slope angles, and Krakatoa-type caldera morphologies. Erosional features comprise numerous radial channels which extend from below the rim toward the base of the dome, and in some cases, patterns of anastamosing gullies which contribute to the main radial channels. Constructional features include blanketed flanks interpreted as dune or fan-like deposits of ash, and perhaps lava deltas. A possible explanation for the morphological features associated with these volcanoes is that they were formed by explosive volcanic density currents. Such eruptions would be expected on Mars where a rising magma came in contact with a thick layer of permafrost generating a base surge or after a Vulcanian explosion of a separate gas phase producing a nuée ardente. Crater age data from the surface of Martian domes and shields indicate that such explosive activity occurred more frequently early in Martian geologic history. This is more consistent with the view that the volcanic density flows were base surges rather than nuées ardentes, the melting of permafrost supplying the water required in base surge generation. If atmospheric conditions were more clement at the time, allowing the recycling of water back to the ground water, then the length of duration of phreatic activity would have been longer, not being limited by depletion time of the local permafrost reservoir.  相似文献   

18.
We present results of our morphologic and stratigraphic investigations in the Amenthes region for which our observations suggest a complex spatial and temporal interrelation between volcanic and possibly water-related processes. We have produced a series of self-consistent geological maps and a stratigraphic correlation chart that show the spatial and temporal distribution of volcanic, fluvial and tectonic processes.The Amenthes region consists of a broad trough-like topographic depression that has served as a path for the supply of materials from Hesperia Planum to Isidis Planitia. It is most likely that Hesperia Planum and, in particular the area north of Hesperia Planum, including Tinto Vallis, Palos crater and the surrounding dissected highlands have acted as a source region for materials that were transported into the Amenthes trough and farther into the Isidis basin. The Amenthes trough, as well as the graben of Amenthes Fossae were formed after the Isidis impact in the Noachian and represent likely the oldest features in the Amenthes region. Dendritic valley networks, that bear evidence for surface runoff, have dissected the highlands adjacent to Amenthes Planum and within the Tinto Vallis and Palos crater region before ∼3.7 Ga. The ridged volcanic plains located near the Palos crater and Tinto Vallis region, within Amenthes Planum as well as within the Isidis transitional plains were formed between ∼3.5 and 3.2 Ga and represent the volcanic activity which resulted in the flooding of the Amenthes trough. The sinuous channel of Tinto Vallis was formed in the Hesperian (?3.5 Ga) and shows characteristics, which are consistent with both ground water sapping and igneous processes. The Palos crater outflow channel was formed nearly at the same time as Tinto Vallis, between ∼3.5 Ga and ∼3.2 Ga and postdates the volcanic flooding of the Amenthes trough in the Hesperian. Small valleys (∼3.4-2.8 Ga) incised into the ridged plains of Amenthes Planum appear also within the transitional plains located between the Amenthes plains and the Isidis interior plains. Our model ages show that Tinto Vallis, the Palos crater outflow channel as well as the small valleys are unlikely formed at the same time and by the same processes as the dendritic valley networks and represent an episode that clearly postdates the volcanic activity.  相似文献   

19.
The main goal of this paper is to estimate the possible composition of the tessera material on the basis of an interpretation of the morphology of the tessera precursor terrain. The results of detailed photogeologic analysis of tessera are presented. For the study, 56 randomly chosen areas that characterize the surface of large and small tessera massifs were selected. Each area represents a portion of the F-MAP photomosaics acquired at a 75 m/px resolution. The results of this study show that the tessera precursor terrain appears everywhere as plains. In its morphology, these plains are similar to the plains outside the tessera massifs. An overview of all possible mechanisms of the formation of plains on Venus and comparison of these mechanisms with the data of the chemical measurements on the surface of Venus suggests that the Venusian plains were formed as a result of the emplacement of low-viscous basaltic lava. This rather well-known conclusion is made here for the first time in order to estimate the possible composition of the tessera material. Thus, it is likely that the composition of the tessera precursor plains is similar to the composition of the basaltic plains on Venus. The products of posttessera volcanism in the form of morphologically smooth plains commonly occur within the tessera terrains. Morphologically, these plains are similar to the regional Venusian plains, which strongly suggests a basaltic composition of such plains. There are only two volcanic flows within the whole tessera terrain on Venus whose morphology permits one to interpret them as a manifestation of nonbasaltic, more siliceous volcanism. This means that the material of the regional tessera-bearing highlands very rarely responded to the thermal influence from below by siliceous volcanism. If some hypothetical granitelike material makes up the main portion of the tessera highlands, this material remains hidden. Therefore, the hypothesis of the granitelike bulk composition of the tessera highlands has little support from observations. At the current stage of the study of Venus, a model in which tessera highlands are composed predominantly of basalt with a possible, but insignificant component of more siliceous material is thought to be correct.  相似文献   

20.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号