首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Steady-state element release rates from crystalline basalt dissolution at far-from-equilibrium were measured at pH from 2 to 11 and temperatures from 5 to 75 °C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ?25 °C but slower at alkaline pH and temperatures ?50 °C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Calcium is primarily present in plagioclase, which exhibits a U-shaped dissolution rate dependence on pH. In contrast, Mg and Fe are contained in pyroxene and olivine, minerals whose dissolution rates decrease monotonically with pH. As a result, crystalline basalt preferentially releases Mg and Fe relative to Ca at acidic conditions. The injection of acidic CO2-charged fluids into crystalline basaltic terrain may, therefore, favour the formation of Mg and Fe carbonates rather than calcite. Element release rates estimated from the sum of the volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study.  相似文献   

2.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   

3.
The coupled δ13C-radiocarbon systematics of three European stalagmites deposited during the Late Glacial and early Holocene were investigated to understand better how the carbon isotope systematics of speleothems respond to climate transitions. The emphasis is on understanding how speleothems may record climate-driven changes in the proportions of biogenic (soil carbon) and limestone bedrock derived carbon. At two of the three sites, the combined δ13C and 14C data argue against greater inputs of limestone carbon as the sole cause of the observed shift to higher δ13C during the cold Younger Dryas. In these stalagmites (GAR-01 from La Garma cave, N. Spain and So-1 from Sofular cave, Turkey), the combined changes in δ13C and initial 14C activities suggest enhanced decomposition of old stored, more recalcitrant, soil carbon at the onset of the warmer early Holocene. Alternative explanations involving gradual temporal changes between open- and closed-system behaviour during the Late Glacial are difficult to reconcile with observed changes in speleothem δ13C and the growth rates. In contrast, a stalagmite from Pindal cave (N. Spain) indicates an abrupt change in carbon inputs linked to local hydrological and disequilibrium isotope fractionation effects, rather than climate change. For the first time, it is shown that while the initial 14C activities of all three stalagmites broadly follow the contemporaneous atmospheric 14C trends (the Younger Dryas atmospheric 14C anomaly can be clearly discerned), subtle changes in speleothem initial 14C activities are linked to climate-driven changes in soil carbon turnover at a climate transition.  相似文献   

4.
Seismic hazard is associated with recent and present fault activity in mountain ranges. In the Betic-Rif alpine mountain chain, tectonic activity started in the Cretaceous, and topographic uplift continues since Tortonian times as a consequence of the NW-SE oblique convergence between Africa and Eurasia. The deformation is active and produces seismicity that sometimes has catastrophic consequences. The Al Hoceima earthquake (February 24, 2004), considered one of the largest earthquakes ever recorded instrumentally in the westernmost Mediterranean (M = 6.3), caused great damage in the region. Seismological studies agree that the main shock was situated on land, at the limit between the External and Internal Zones of the Rif, at a depth of 10-14 km. The focal mechanism points to a strike-slip solution with a NW-SE oriented P axis, quite similar to those of the significant 1994 earthquake swarm located to the north. The epicenter aftershocks distribution would signal the presence of a N-S oriented sinistral fault, activated by the NW-SE regional compression associated to plate boundary convergence. In this setting, the seismogenic fault ruptures related to these seismic events are expected to have reached the Earth's surface. However, detailed field work carried out 1 month after the earthquake does not evidence any N-S strike-slip coseismic fault in the epicentral area. The main observed effects were landslides, damages to constructions, and locally open cracks indicating an unexpected NW-SE extension. Scarce N-S faults are normal, the main ones being located several kilometers away from the epicentral area. To explain this apparent contradiction between geological and seismological observations, we propose a decoupled tectonic model with crustal detachments that separate a deep brittle crust from an upper crust undergoing uplift, and the development of large folds and normal faults. This geological setting, common to internal zones of cordilleras, may need to be taken into account in future paleoseismicity studies and in the assessment of seismic hazard.  相似文献   

5.
6.
Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed more recent disturbances. We thus interpret the 546 Ma age as the approximate time of impact.  相似文献   

7.
Iron and Sr bearing phases were thoroughly investigated by means of spectrometric and microscopic techniques in Callovian–Oxfordian (COX) samples originating from the ANDRA Underground Research Laboratory (URL) in Bure (France). Strontium was found to be essentially associated with celestite, whereas Fe was found to be distributed over a wide range of mineral phases. Iron was mainly present as Fe(II) in the studied samples (∼93% from Mössbauer results). Most of the Fe(II) was found to be in pyrite, sideroplesite/ankerite and clay minerals. Iron(III), if present, was associated with clay minerals (probably illite, illite-smectite mixed layer minerals and chlorite). No Fe(III) oxy(hydro)xide could be detected in the samples. Strontianite was not observed either. Based on these observations, it is likely that the COX porewater is in equilibrium with the following carbonate minerals, calcite, dolomite and ankerite/sideroplesite, but not with strontianite. It is shown that this equilibrium information can be combined with clay cation exchange composition information in order to give direct estimates or constraints on the solubility products of the carbonate minerals dolomite, siderite and strontianite. As a consequence, an experimental method was developed to retrieve the cation exchanged Fe(II) in very well preserved COX samples.  相似文献   

8.
The pressure-volume-temperature-composition (PVTX) properties of H2O-CH4 were determined from the bubble point curve to 500 °C and 3 kbar for compositions ?4 mol.% CH4 using the synthetic fluid inclusion technique. H2O-CH4 inclusions were produced by loading known amounts of Al3C4 and H2O into platinum capsules along with pre-fractured and inclusion-free quartz cores. During heating the Al3C4 and H2O react to produce CH4, and the H2O-CH4 homogeneous mixture was trapped as inclusions during fracture healing at elevated temperature and pressure. The composition of the fluid in the inclusion was confirmed using the weight loss technique after the experiment and by Raman spectroscopic analysis of the inclusions.Homogenization temperatures of the inclusions were determined and the results were used to construct iso-Th lines, defined as a line connecting the formation temperature and pressure with the homogenization temperature and pressure. The pressure in the inclusion at the homogenization temperature was calculated from the Duan equation of state (EOS). The slope (ΔPT) of each iso-Th line was calculated and the results fitted to a polynomial equation using step-wise multiple regression analysis to estimate the slope of the iso-Th line as a function of the homogenization temperature and composition according to:
PT)=a+b·m+c·m4+d·(Th)2+e·m·Th+f·m·(Th)4,  相似文献   

9.
A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO3, 5 mol % K, and less than 1 mol % each of SO4, Ca, Mg, ∑CO2(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO4 solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号