首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and biological evaluation of phenylcarboxylic acid and phenylboronic acid containing HIV-1 protease inhibitors and their functional effect on enzyme inhibition and antiviral activity in MT-2 cell lines. Inhibitors bearing bis-THF ligand as P2 ligand and phenylcarboxylic acids and carboxamide as the P2′ ligands, showed very potent HIV-1 protease inhibitory activity. However, carboxylic acid containing inhibitors showed very poor antiviral activity relative to carboxamide-derived inhibitors which showed good antiviral IC50 value. Boronic acid derived inhibitor with bis-THF as the P2 ligand showed very potent enzyme inhibitory activity, but it showed lower antiviral activity than darunavir in the same assay. Boronic acid containing inhibitor with a P2-Crn-THF ligand also showed potent enzyme Ki but significantly decreased antiviral activity. We have evaluated antiviral activity against a panel of highly drug-resistant HIV-1 variants. One of the inhibitors maintained good antiviral activity against HIVDRVRP20 and HIVDRVRP30 viruses. We have determined high resolution X-ray structures of two synthetic inhibitors bound to HIV-1 protease and obtained molecular insight into the ligand-binding site interactions.  相似文献   

2.
Site-specifically triple-labelled three-helix bundle affinity proteins (affibody molecules) have been produced by total chemical synthesis. The 58 aa affinity proteins were assembled on an automated peptide synthesizer, followed by manual on-resin incorporation of three different reporter groups. An orthogonal protection strategy was developed for the site-specific introduction of 5-(2-aminethylamino)-1-naphthalenesulfonic acid (EDANS) and 6-(7-nitrobenzofurazan-4-ylamino)-hexanoic acid (NBDX), constituting a donor/acceptor pair for fluorescence resonance energy transfer (FRET), and a biotin moiety, used for surface immobilization. Circular dichroism and biosensor studies of the synthetic proteins and their recombinant counterparts revealed that the synthetic proteins were folded and retained their binding specificities. The biotin-conjugated protein could be immobilized onto a streptavidin surface without loss of activity. The synthetic, doubly fluorescent-labelled affinity proteins were shown to function as fluorescent biosensors in an assay for the specific detection of unlabelled human IgG and IgA.  相似文献   

3.
The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.  相似文献   

4.
A 2-4-6 subsite-coupled model is proposed to predict the cleavabilityof peptide sequences by HTV protease. For an enzyme with eightextended specificity subsites, such as HIV protease, the couplingeffects of the second subsite with the fourth one and the fourthwith the sixth subsite are much more important than those ofthe others. Accordingly, in establishing a model for predictingwhether a given peptide can be cleaved by HIV protease, the2-4-6 subsite-coupled effect must be incorporated. The modelleads to an algorithm for predicting protease-susceptible sitesfrom primary structure. The high rate of correct predictionfor both HIV-1 and HIV-2 proteases has borne out that this kindof alternation-coupled mechanism does exist along the extendedsubsites of HIV protease. The principle of the new method canbe used for analyzing the specificity of any multisubsite enzyme.In particular, the new method can serve as a supplementary meansfor finding effective inhibitors of HIV protease, which is oneof the targets in designing potential drugs for AIDS therapy  相似文献   

5.
The substrate mimetics approach is a versatile method for small-scale enzymatic peptide-bond synthesis in aqueous systems. The protease-recognized amino acid side chain is incorporated in an ester leaving group, the substrate mimetic. This shift of the specific moiety enables the acceptance of amino acids and peptide sequences that are normally not recognized by the enzyme. The guanidinophenyl group (OGp), a known substrate mimetic for the serine proteases trypsin and chymotrypsin, has now been applied for the first time in combination with papain, a cheap and commercially available cysteine protease. To provide insight in the binding mode of various Z-X(AA)-OGp esters, computational docking studies were performed. The results strongly point at enzyme-specific activation of the OGp esters in papain through a novel mode of action, rather than their functioning as mimetics. Furthermore, the scope of a model dipeptide synthesis was investigated with respect to both the amino acid donor and the nucleophile. Molecular dynamics simulations were carried out to prioritize 22 natural and unnatural amino acid donors for synthesis. Experimental results correlate well with the predicted ranking and show that nearly all amino acids are accepted by papain.  相似文献   

6.
The application of dynamic ligation screening (DLS), a methodology for fragment‐based drug discovery (FBDD), to the aspartic protease β‐secretase (BACE‐1) is reported. For this purpose, three new fluorescence resonance energy transfer (FRET) substrates were designed and synthesized. Their kinetic parameters (Vmax, KM, and kcat) were determined and compared with a commercial substrate. Secondly, a peptide aldehyde was designed as a chemically reactive inhibitor (CRI) based on the Swedish mutation substrate sequence. Incubation of this CRI with the protease, a FRET substrate, and one amine per well taken from an amine library, which was assembled by a maximum common substructure (MCS) approach, revealed the fragment 3‐(3‐aminophenyl)‐2H‐chromen‐2‐one ( 1 ) to be a competitive BACE‐1 inhibitor that enhanced the activity of the CRI. Irreversibly formed fragment combination products of 1 with the initial peptide sequence were active and confirmed the targeting of the active site through the ethane‐1,2‐diamine isostere. Finally, structure‐assisted combination of fragment 1 with secondary fragments that target the S1 site in hit optimization yielded novel, entirely fragment‐based BACE‐1 inhibitors with up to 30‐fold improved binding affinity. Interactions with the protein were explained by molecular modeling studies, which indicate that the new fragment combinations interact with the catalytic aspartic acid dyad, as well as with the adjacent binding sites required for potency.  相似文献   

7.
γ-Secretase is a four-component membrane-embedded aspartyl protease involved in the final cleavage step of the amyloid precursor protein (APP) to generate the amyloid-β (Aβ) peptide. Different amino-acid lengths of Aβ peptide can be produced by this enzyme, of which the oligomerization and aberrant accumulation of the product containing 42 amino acids (Aβ42) has been associated with the development and formation of amyloid-β plaques in the brain of Alzheimer's disease (AD) patients. Herein, we review some of the most important topics associated with the structure and activity of γ-secretase and the factors that alter the substrate cleavage pattern, critical to the formation of the different isoforms of the amyloid-β peptides.  相似文献   

8.
The use of a cryogel in a combined application as a solid support for automated synthesis of a peptide ligand followed by affinity chromatography of a target protein is evaluated. The advantage, of synthesizing the ligand directly on the cryogel, is the circumvention of the standard process of synthesizing a peptide on a solid support, followed by cleavage, purification, analysis, and finally immobilization on the cryogel. To demonstrate the application, a peptide affinity ligand is synthesized directly on a cryogel with a yield of 28.4 μmol g?1 dry polymer and purity of 45% of crude product. The affinity capture of an antipeptide antibody reveals a specific binding capacity of 0.86 mg g?1 dry polymer. To further elucidate the general availability of a peptide ligand to a macromolecular interaction, a trypsin substrate is synthesized on a cryogel. Trypsin cleavage of immobilized substrate is determined to 1.5 μmol g?1 dry polymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4383–4391, 2013  相似文献   

9.
Peptides and proteins, evolved by nature to perform vital biological functions, would constitute ideal candidates for therapeutic intervention were it not for their generally poor pharmacokinetic profiles. Nonpeptide peptidomimetics have thus been pursued because they might overcome these limitations while maintaining both the potency and selectivity of the parent peptide or protein. Since the late 1980s, we have sought to design, synthesize, and evaluate a novel, proteolytically stable nonpeptide peptidomimetic scaffold consisting of a repeating structural unit amenable to iterative construction; a primary concern is maintaining both the appropriate peptide-like side-chains and requisite hydrogen bonding. In this Account, we detail how efforts in the Smith-Hirschmann laboratories culminated in the identification of the 3,5-linked polypyrrolinone scaffold. We developed effective synthetic protocols, both in solution and on solid supports, for iterative construction of diverse polypyrrolinones that present functionalized peptide-like side-chains. As a result of the rigid nature of the pyrrolinone scaffold, control over the backbone conformation could be exerted by modulation of the stereogenicity of the constituent monomers and the network of intramolecular hydrogen bonding. The extended conformation of the homochiral 3,5-linked polypyrrolinone scaffold proved to be an excellent mimic for β-strands and β-sheets. Application to enzyme inhibitor design and synthesis led not only to modest inhibitors of the aspartic acid protease renin and the matrix metalloprotease class of enzymes, but importantly to bioavailable HIV-1 protease inhibitors with subnanomolar binding constants. The design and synthesis of a competent peptide-pyrrolinone hybrid ligand for the class II major histocompatibility complex (MHC) antigen protein HLA-DR1 further demonstrated the utility of the 3,5-polypyrrolinone motif as a mimic for the extended polyproline type II peptide backbone. Equally important, we sought to define, by synthesis, the additional conformational space accessible to the polypyrrolinone structural motif, with the ultimate goal of accessing pyrrolinone-based turn and helix mimetics. Toward this end, a mono-N-methylated bispyrrolinone was found to adopt an extended helical array in the solid state. Subsequent synthesis of d,l-alternating (heterochiral) tetrapyrrolinones both validated the expected turn conformations in solution and led to a functionally active mimetic of a peptidal β-turn (similar to somatostatin). Finally, the design, synthesis, and structural evaluation of both acyclic and cyclic heterochiral (that is, d,l-alternating) hexapyrrolinones yielded nanotube-like assemblies in the solid state. Taken together, these results illustrate the remarkable potential of the 3,5-linked polypyrrolinone scaffold as β-strand, β-sheet, β-turn, and potentially helical peptidomimetics.  相似文献   

10.
Taspase 1 is an N‐terminal threonine protease implicated in leukemia and other cancers. Despite intensive efforts in recent years, only a limited number of Taspase 1 inhibitors are currently available, and they lack general applicability. Here we present a novel class of Taspase 1 inhibitors based on a peptidyl succinimidyl peptide motif. These inhibitors were obtained from the substrate cleavage sequence and mechanistic considerations involving the previously proposed asparaginase‐type cleavage mechanism. We anticipate that this class of Taspase 1 inhibitor will find wide application in further biochemical and structural studies, for example for better investigating the molecular details of the unusual enzymatic cleavage mechanism of Taspase 1.  相似文献   

11.
12.
Proteases are a group of enzymes with a catalytic function to hydrolyze peptide bonds of proteins. Proteases regulate the activity, signaling mechanism, fate, and localization of many proteins, and their dysregulation is associated with various pathological conditions. Proteases have been identified as biomarkers and potential therapeutic targets for multiple diseases, such as acquired immunodeficiency syndrome, cardiovascular diseases, osteoporosis, type 2 diabetes, and cancer, where they are essential to disease progression. Thus, protease inhibitors and inhibitor-like molecules are interesting drug candidates. To study proteases and their substrates and inhibitors, simple, rapid, and sensitive protease activity assays are needed. Existing fluorescence-based assays enable protease monitoring in a high-throughput compatible microtiter plate format, but the methods often rely on either molecular labeling or synthetic protease targets that only mimic the hydrolysis site of the true target proteins. Here, we present a homogenous, label-free, and time-resolved luminescence utilizing the protein-probe method to assay proteases with native and denatured substrates at nanomolar sensitivity. The developed protein-probe method is not restricted to any single protein or protein target class, enabling digestion and substrate fragmentation studies with the natural unmodified substrate proteins. The versatility of the assay for studying protease targets was shown by monitoring the digestion of a substrate panel with different proteases. These results indicate that the protein-probe method not only monitors the protease activity and inhibition, but also studies the substrate specificity of individual proteases.  相似文献   

13.
The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.  相似文献   

14.
Molecular models of HIV-1 protease and 21 peptide substrateswith single amino acid substitutions at positions from P4 toP3' were built and compared with kinetic measurements. The crystalstructure of HTV-1 protease with a peptidic inhibitor was modifiedto model the peptide substrate Pro-Ala-Val-Ser-Leu-Ala-Met-Thrfor the starting geometry. Models were built of two reactionintermediates, HIV protease with peptide substrate and withits tetrahedral intermediate. The energy minimization used anew algorithm that increased the speed and eliminated a cut-offfor non-bonded interactions. After minimization the models forsubstrate and tetrahedral intermediate both had root mean squaredeviations of 0.48 Å for all atoms of the HIV proteasecompared to the starting crystal structure. Differences in themodel structures and interaction energies for HIV protease withdifferent substrates were analyzed. The calculated interactionenergies for the 21 HIV protease-tetrahedral intermediate modelsgave a correlation coefficient of 0.64 with the kinetic measurements.The eight substrates with changes in the P1 and P1' residuesnext to the scissile bond gave the highest correlation of 0.93,while the 14 substrates with changes in P2-P2' gave a correlationcoefficient of 0.86. The catalytic mechanism and factors influencingthe catalytic efficiency of the different substrates are discussedin relation to the models. The predictive ability of molecularmechanics calculations is discussed in the context of the statisticalmechanics analysis of the differences in free energy.  相似文献   

15.
Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition.  相似文献   

16.
17.
Protease activity was detected in the culture medium of Serratia marcescens AP3801 grown at 10°C, which was isolated from soil collected from the top of a mountain. The enzyme, designated as CP-58 protease, was purified to homogeneity from the culture broth by ion exchange and gel filtration chromatographies. The molecular mass of the protease was 58 kDa, and its isoelectric point was close to 6.0. Maximal activity toward azocasein was observed at 40°C and from pH 6.5 to 8.0. The activity was strongly inhibited by 1,10-phenanthroline, suggesting that the enzyme is a metalloprotease. The N-terminal amino acid sequence was Ser-Leu-Asn-Gly-Lys-Thr-Asn-Gly-Trp-Asp-Ser-Val-Asn-Asp-Leu-Leu-Asn-Tyr-His-Asn-Arg-Gly-Asn (or Asp)-Gly-Thr-Ile-Asn-Asn-Lys-Pro-Ser-Phe-Asp-Ile-Ala. A search through databases for sequence homology aligned CP-58 protease with metalloprotease. The result of the cleavage pattern of oxidized insulin B-chain suggests that CP-58 protease has a broader specificity than other proteases against the peptide substrate.  相似文献   

18.
Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. β-Peptides and β-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for β-peptides and β-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize β-peptides and β-peptoids with high molecular weight. This review summarizes the polymerization methods for β-peptides and β-peptoids. Moreover, future developments of the polymerization method for the synthesis of β-peptides and β-peptoids will be discussed.  相似文献   

19.
The interaction of the nucleocapsid NCp7 of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein with the RNA packaging signal Psi ensures specific encapsidation of the dimeric full length viral genome into nascent virus particles. Being an essential step in the HIV-1 replication cycle, specific genome encapsidation represents a promising target for therapeutic intervention. We previously selected peptides binding to HIV-1 Psi-RNA or stem loops (SL) thereof by phage display. Herein, we describe synthesis of peptide variants of the consensus HWWPWW motif on membrane supports to optimize Psi-RNA binding. The optimized peptide, psi-pepB, was characterized in detail with respect to its conformation and binding properties for the SL3 of the Psi packaging signal by NMR and tryptophan fluorescence quenching. Functional analysis revealed that psi-pepB caused a strong reduction of virus release by infected cells as monitored by reduced transduction efficiencies, capsid p24 antigen levels, and electron microscopy. Thus, this peptide shows antiviral activity and could serve as a lead compound to develop new drugs targeting HIV-1.  相似文献   

20.
The HIV-1 Rev protein is responsible for shuttling partially spliced and unspliced viral mRNA out of the nucleus. This is a crucial step in the HIV-1 lifecycle, thus making Rev an attractive target for the design of anti-HIV drugs. Despite its importance, there is a lack of structural, biophysical, and quantitative information about Rev. This is mainly because of its tendency to undergo self-assembly and aggregation; this makes it very difficult to express and handle. To address this knowledge gap, we have developed two new highly efficient and reproducible methods to prepare Rev in large quantities for biochemical and structural studies: 1) Chemical synthesis by using native chemical ligation coupled with desulfurization. Notably, we have optimized our synthesis to allow for a one-pot approach for the ligation and desulfurization steps; this reduced the number of purification steps and enabled the obtaining of desired protein in excellent yield. Several challenges emerged during the design of this Rev synthesis, such as racemization, reduced solubility, formylation during thioester synthesis, and the necessity for using orthogonal protection during desulfurization; solutions to these problems were found. 2) A new method for expression and purification by using a vector that contained an HLT tag, followed by purification with a Ni column, a cation exchange column, and gel filtration. Both methods yielded highly pure and folded Rev. The CD spectra of the synthetic and recombinant Rev proteins were identical, and consistent with a predominantly helical structure. These advances should facilitate future studies that aim at a better understanding of the structure and function of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号