首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Food microbiology》2004,21(4):469-473
The bactericidal efficiency of hydrostatic pressure treatment combined with a slow decompression (SD; about 30 s) or a rapid decompression (RD; about 2 ms) against clinically isolated Escherichia coli O157:H7 was investigated in apple juice, orange juice and McIlvaine buffers having the same pH values of the juices used. Effects of the SD and RD treatments on survivability of E. coli O157:H7 cells during storage at 4°C in the juices were also investigated. The RD treatment showed higher inactivation effect than the SD treatment in both the juices and buffers. Untreated E. coli O157:H7 cells were not inactivated during storage for 5 days; however, post-treatment storage after both the SD and RD treatments reduced survivability of E. coli O157:H7 cells in the juices. The degree of the reduction was higher in the cells subjected to the RD treatment than to the SD treatment.  相似文献   

2.
The behavior of Escherichia coli O157:H7 in Granny Smith, Gala, Empire, McIntosh, Red Delicious, and Golden Delicious apple juice with or without supplementation with 5 or 10 mM vanillic acid was examined over a storage period of 7 days at 4 and 15 degrees C. The consequences of supplementation on sensory difference and preference were also determined by triangle testing. Juices made from the six apple cultivars had pH values ranging between pH 3.13 and 3.92. Vanillic acid exerted a concentration, pH, and time-dependent lethal effect toward E. coli O157:H7 in unpasteurized apple juice. Supplementation with 10 mM vanillic acid led to a 5-logarithm reduction in populations after 7 days at both temperatures, but sensory analysis revealed significant differences from and preference for unsupplemented juices. Supplementation with 5 mM vanillic acid accelerated death of E. coli O157:H7, but population reductions ranged from 5 log CFU/ml in low pH juices to none in high pH juices, particularly at 4 degrees C. No sensory difference or preference was detected in two of the six juices at this level of supplementation.  相似文献   

3.
Abstract: Survival of Escherichia coli O157:H7 and Salmonella Stanley on apples as affected by application of polylactic acid (PLA) coating with antimicrobials was investigated. Golden Delicious apples were spot inoculated with E. coli O157:H7 or S. Stanley and spray coated with PLA solutions containing lactic acid (LA), disodium ethylenediaminetetraacetic acid (EDTA), sodium benzoate (SB), potassium sorbate (PS), or their combination (LA + EDTA, SB + LA, SB + LA + EDTA). Apples without any coating treatment served as controls. Coating treatments were allowed to dry fully, and the apples were stored at 4 °C for 14 d. Antimicrobial coatings reduced populations of E. coli O157:H7 and S. Stanley by up to 4 log CFU/cm2 at 1 d and 4.7 log CFU/cm2 at 14 d, compared to controls. SB + LA combination had a similar effectiveness as the SB + LA + EDTA combination against both pathogens and was more effective than other coating treatments. Without antimicrobial treatment, E. coli O157:H7 and S. Stanley were able to survive on apples stored at 4 °C for up to 14 d. The antimicrobial PLA coating provides an alternative intervention to reduce the pathogens on apples. Practical Application: Antimicrobial PLA coatings provide an alternative method to reduce pathogenic contaminations on fruit surface, and therefore, reduce the risk of food‐borne outbreaks.  相似文献   

4.
BACKGROUND: Generally, acidic fruits and fruit juices are considered ‘safe’ from a microbiological point of view. However, some outbreaks of foodborne illnesses have been linked to the consumption of unpasteurised cider. The aim of this work was to study the survival of Escherichia coli in apple juice, wounds and flesh and on apple surfaces at different temperatures and to determine the effect of the fungal biocontrol agent Candida sake CPA‐1 against the colonisation of apple by E. coli. RESULTS: Trials were conducted with a mixture of five strains of E. coli isolated from apples. E. coli was unable to grow in apple juice at 5, 15 and 25 °C but survived. At 10 °C and above, E. coli thrived in fresh‐cut apple and wounds. At 5 °C it survived in apple wounds after 27 days of storage and after 21 days in fresh‐cut apples. When E. coli was inoculated in apple wounds together with the yeast antagonist C. sake, its growth was reduced by approximately 1 log cfu wound?1 at 25 °C. At 5 °C no effect of the biocontrol agent was observed. CONCLUSION: Despite the low pH of apple, a rapid increase in the bacterial population is possible if the temperature is not kept low enough. The biocontrol agent C. sake, developed to prevent fruit decay during storage, could also reduce E. coli growth in wounded apples at abusive temperatures. This would represent an additional benefit of using this biocontrol agent when applied to control postharvest diseases. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The destructive effect of high pressure (615 MPa) combined with low temperature (15 degrees C) on various strains of Escherichia coli O157:H7 and various serovars of Salmonella in grapefruit, orange, apple, and carrot juices was investigated. The three-strain cocktail of E. coli O157:H7 (SEA13B88, ATCC 43895, and 932) was found to be most sensitive in grapefruit juice (8.34-log reduction) and least in apple juice (0.41-log reductions) when pressurized at 615 MPa for 2 min at 15 degrees C. Correspondingly, no injured survivor was detected in grapefruit and carrot juices under similar treatment conditions. No Salmonella spp. were detected in a 2-min pressure treatment (615 MPa, 15 degrees C) of grapefruit and orange fruit juices. Except for Enteritidis, all four serovars tested in the present study have viability loss of between 3.92- and 5.07-log reductions when pressurized in apple juice at 615 MPa for 2 min at 15 degrees C. No injured cells were recovered from grapefruit and orange juices, whereas the same treatment demonstrated reduction in numbers of Salmonella serovars Agona and Muenchen in apple juices and to a lesser extent with Typhimurium, Agona, and Muenchen in carrot juice. The present study demonstrated that low-temperature, high-pressure treatment has the potential to inactivate E. coli O157:H7 strains and different Salmonella spp. in different fruit juices.  相似文献   

6.
Destruction of Escherichia coli O157:H7 in apple cider treated with fumaric acid and sodium benzoate (0.15% and 0.05% w/v, respectively) was determined under pH and storage temperatures that commonly occur in apple cider. At 5°C storage, while destruction of E. coli O157:H7 in the presence of preservatives increased with time, there was little decline in E. coli O157:H7 populations in the absence of the preservatives. Increasing storage temperatures to 15°C and 25°C significantly increased the rate of destruction of E. coli O157:H7 in cider with the preservatives (P < 0.05). Increasing the pH of cider (from 3.2 to 4.7) decreased the rate of destruction of E. coli O157:H7.  相似文献   

7.
Survival of Escherichia coli O157:H7 in apple cider containing no preservatives, 0.025% dimethyl dicarbonate (DMDC), 0.045% sodium benzoate (SB), 0.0046% sodium bisulfite (NaS; 65.5% sulfur dioxide), or a combination of NaS and SB (NaS/SB) and stored at 4, 10, and 25°C was evaluated. E. coli O157:H7 survived for up to 18 days at 4,10, and 25°C in unpreserved apple cider. At 4 and 10°C, DMDC was most efficient at inactivating E. coli O157:H7, generally followed by NaS/SB SB, and NaS (p<0.05). E coli O157:H7 was more resistant to preservatives at 4°C than at 25°C (P < 0.05). E. coli O157:H7 was sublethally injured in cider containing preservatives, and to a lesser extent, in unpreserved cider. Generally, injury was more pronounced in cider containing DMDC, followed by NaS/SB, SB, and NaS (p<0.05).  相似文献   

8.
Differences in survival and growth among five different Escherichia coli O157:H7 strains in three apple varieties were determined at various temperatures. Jonathan, Golden Delicious, and Red Delicious apples were wounded and inoculated with E coli O157:H7 strains C7929 (apple cider isolate), 301C (chicken isolate), 204P (pork isolate), 933 (beef isolate), and 43890 (human isolate) at an initial level of 6 to 7 log CFU/g. The inoculated apples were stored at a constant temperature of 37, 25, 8, or 4 degrees C or at 37 degrees C for 24 h and then at 4 degrees C, and bacterial counts were determined every week for 28 days. By day 28, for Jonathan apples at 25 degrees C, the apple isolate counts were significantly higher than the chicken and human isolate counts. At 4 degrees C for 28 days, the human isolate inoculated into Jonathan, Golden Delicious, and Red Delicious apples was present in significantly smaller numbers than the other strains. The apple isolate survived significantly better at 4 degrees C, yielding the highest number of viable cells. By days 21 and 28, for apples stored at 37 degrees C for the first 24 h and then at 4 degrees C, the counts of viable E. coli O157:H7 apple and human isolates were 6.8 and 5.8 log CFU/g at the site of the wound, whereas for apples kept at 4 degrees C for the duration of storage, the respective counts were 5.6 and 1.5 log CFU/g. Our study shows that E. coli O157:H7 strains responded differentially to their ability to survive in these three apple varieties at 25 or 4 degrees C and produced higher viable counts when apples were temperature abused at 37 degrees C for 24 h and then stored at 4 degrees C for 27 days.  相似文献   

9.
The effects of pH, depth of food medium and ultraviolet (UV) light dose on the inactivation of Escherichia coli O157:H7 in UV‐opaque products such as apple juice (pH 3.5) and egg white (pH 9.1) were investigated. The applied UV dose ranged from 0 to 6.5 mW min cm?2, while the depths of the medium were 1, 3.5, 5 and 10 mm. The pH of the medium did not affect the inactivation of E coli O157:H7, since similar inactivation characteristics were obtained for both apple juice and liquid egg white. As expected, decreasing the depth of the medium increased the inactivation of E coli O157:H7. More than a 5‐log reduction was obtained when the fluid depth and UV dose were 1 mm and 6.5 mW min cm?2 respectively. However, less than a 1‐log reduction was obtained when the fluid depth was 10 mm. A two‐phase kinetic model was used to model the inactivation of E coli O157:H7. This model indicated that at higher fluid depths the inactivation rate was controlled by the second, slower inactivation phase, resulting in a lower overall inactivation. The visual appearance of the treated apple juice and egg white did not show any discolouration changes during 4 weeks of storage at ambient temperature (25 °C). Copyright © 2003 Society of Chemical Industry  相似文献   

10.
Survival of Escherichia coli O157:H7, Salmonella Muenchen, and yeasts and molds on apples as affected by application of five commercial apple waxes was investigated. Red Delicious cv. apples at 21 degrees C were spot inoculated with E. coli O157:H7 and S. Muenchen and spray coated with waxes. Apples sprayed with water served as controls. Apples were dried at either 21 or 55 degrees C for 2 min before subjecting to microbiological analysis after storage for 0, 1, 3, 6, and 12 weeks at 2 or 21 degrees C. Drying temperature did not significantly influence populations of E. coli O157:H7 and S. Muenchen. Waxing reduced populations E. coli O157:H7 and S. Muenchen by up to 1.48 log10 cfu/apple. Compared to untreated apples, treatment of apples with water or waxes resulted in significant (P < or = 0.05) reductions in populations of E. coli O157:H7 and S. Muenchen during storage at 2 degrees C. Reductions on waxed apples stored at 21 degrees C were not as marked compared to reductions on waxed apples stored at 2 degrees C. With the exception of one wax, drying temperature did not significantly influence populations of yeasts and molds. Mold populations were less affected by wax applications than were yeasts, and were detected in higher numbers on apples treated with three of the five waxes compared to populations recovered from untreated control apples. None of the waxes evaluated can be relied upon to kill or remove E. coli O157:H7 and Salmonella on apples.  相似文献   

11.
The effect of high-intensity pulsed electric fields (HIPEF) on the Salmonella Enteritidis and Escherichia coli O157:H7 populations inoculated in apple, pear, orange and strawberry juices as influenced by treatment time and pulse frequency was investigated. Combinations of HIPEF (35 kV/cm, 4 μs pulse length in bipolar mode without exceeding 40 °C) with citric acid or cinnamon bark oil against these pathogenic microorganisms in fruit juices were also evaluated. Treatment time was the more influential factor on the microbial reduction in all the fruit juices analyzed. S. Enteritidis and E. coli O157:H7 were reduced by more than 5.0 log10 units in orange juice treated by only HIPEF; whereas strawberry, apple and pear juices were pasteurized when HIPEF was combined with citric acid at 0.5, 1.5, 1.5%, respectively, or cinnamon bark oil at 0.05, 0.1 and 0.1%, respectively. Synergistic and additive killing effects against S. Enteritidis and E. coli O157:H7 in fruit juices by combining treatments were observed.

Industrial relevance

The use of high-intensity pulsed electric fields treatment as a non-thermal pasteurization method in combination with organic acids or essential oils is an effective process for eliminating S. Enteritidis and E. coli O157:H7 populations in fruit juices upper 5.0 log10 reductions. Therefore, combinations of those treatments may help to ensure the microbiological safety in juice products, and to reduce the risk of food-borne illness caused by the consumption of these kinds of foods.  相似文献   

12.
The objective of this study was to determine the inactivation of non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes in comparison with O157 STEC in commercially produced, shelf-stable lemon and lime juices. The present validation tests confirmed that storage of the juices containing preservatives at room temperatures (22°C) for 3 days (72 h) ensures a >6-log reduction of O26, O45, O103, O111, O121, O145, and O157 STEC. These results demonstrate that non-O157 STEC had survival abilities comparable to those of E. coli O157:H7 strains in acidic food products such as lemon and lime juices (pH 2.5 ± 0.1); therefore, the storage conditions deemed to inactivate E. coli O157:H7 similarly inactivate the non-O157 serotypes.  相似文献   

13.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major etiologic agent that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the main virulence factor of EHEC responsible for the progression to HUS. Although many laboratories have made efforts to develop an effective treatment for Stx-mediated HUS, a specific therapy has not been found yet. Human consumption of bovine colostrum is known to have therapeutic effects against several gastrointestinal infections because of the peptide and proteins (including antibodies) with direct antimicrobial and endotoxin-neutralizing effects contained in this fluid. We have previously demonstrated that colostrum from Stx type 2 (Stx2)-immunized pregnant cows effectively prevents Stx2 cytotoxicity and EHEC O157:H7 pathogenicity. In this study we evaluated the preservation of the protective properties of hyperimmune colostrum against Stx2 (HIC-Stx2) after pasteurization and spray-drying processes by performing in vitro and in vivo assays. Our results showed that reconstituted HIC-Stx2 colostrum after pasteurization at 60°C for 60 min and spray-dried under optimized conditions preserved specific IgG that successfully neutralized Stx2 cytotoxicity on Vero cells. Furthermore, this pasteurized/dehydrated and reconstituted HIC-Stx2 preserved the protective capacity against EHEC infection in a weaned mice model. The consumption of hyperimmune HIC-Stx2 bovine colostrum could be effective for HUS prevention in humans as well as in EHEC control in calves. However, further studies need to be done to consider its use for controlling EHEC infections.  相似文献   

14.
This study investigated the efficacy of 3 GRAS‐status, plant‐derived antimicrobials (PDAs), trans‐cinnamaldehyde (TC), carvacrol (CR), and β‐resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. “Red delicious” apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P < 0.05) and reduced the pathogen by 4‐ to 5‐log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P < 0.05). Moreover, the antimicrobial effect of CR and BR was not affected by the presence of soil, whereas the efficacy of TC and BR was decreased in the presence of soil. Further, no bacteria were detected in the wash solution containing CR and BR; however, E. coli O157:H7 was recovered in the control wash water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P < 0.05). Results suggest that the aforementioned PDAs, especially CR and BR could be used effectively to kill E. coli O157:H7 on apples when used as a wash treatment. Studies on the sensory and quality characteristics of apples treated with PDAs are needed before recommending their usage.  相似文献   

15.
The sensitivity of pulsed electric fields (PEF)‐treated E. coli O157:H7 cells to subsequent holding in apple juice has been evaluated. Escherichia coli O157:H7 cells in apple juice were resistant to PEF. A PEF treatment of 400 µs at any electrical field strength was not sufficient to inactivate one log10cycle of cells. However, PEF injured a large proportion of E. coli O157:H7 cells that became sensitive to a subsequent storage under refrigeration in apple juice. The total lethal effect of the combined process depended on the electrical field strength and storage time. The combination of a PEF treatment at 25 kV/cm for 400 µs and a subsequent storage of the apple juice under refrigeration for 48 h allowed five log10cycles of inactivation to be achieved. The combination of PEF and maintenance under refrigeration has been demonstrated to be an effective pasteurization method, by sufficiently reducing the presence of E. coli O157:H7 in apple juice in order to meet U.S. FDA recommendations.  相似文献   

16.
Raw whole strawberries, if contaminated with pathogens, such as Escherichia coli O157:H7, must be pasteurized prior to consumption. Therefore, the objective of this research was to investigate the thermal inactivation kinetics of E. coli O157:H7 in strawberry puree (SP), and evaluate the changes in anthocyanins and color, and the survival of yeasts and molds (YM) after thermal processing. Inoculated with a 5‐strain cocktail, fresh SP, with or without added sugar (20 and 40 °Brix), was heated at 50, 52, 54, 57.5, 60, and 62.5 °C to determine the thermal resistance of E. coli O157:H7. In raw SP, the average D‐values of E. coli O157:H7 were 909.1, 454.6, 212.8, 46.1, and 20.2 s at 50, 52, 54, 57.5, and 60 °C, respectively, with a z‐value of 5.9 °C. While linearly decreasing with temperature, the log D‐values of E. coli O157:H7 increased slightly with sugar concentration. The log degradation rates of anthocyanins increased linearly with temperature, but decreased slightly with sugar concentrations. These results suggest that sugar may provide some protection to both E. coli O157: H7 and anthocyanins in SP. The browning index was not affected by heating at 50 and 52 ºC at low sugar concentrations, but increased by an average of 1.28%, 2.21%, and 10.1% per min when SP was exposed to heating at 54, 57.5, and 60 °C, respectively. YM was also inactivated by heating. This study demonstrated that properly designed thermal processes can effectively inactivate E. coli O157:H7 and YM in contaminated SP, while minimizing the changes in anthocyanins and color.  相似文献   

17.
《Food microbiology》1999,16(5):447-458
The ability of pH-dependent, stationary phase acid resistance to cross-protect Escherichia coli O157:H7 against a subsequent lethal thermal stress was evaluated using microbiological media and three liquid foods. Three strains were grown for 18 h at 37°C in acidogenic (TSB+G, final pH 4·6–4·7) and non-acidogenic (TSB-G, final pH 7·0–7·2) media to provide stationary phase cells with and without induction of pH-dependent acid resistance. The cells were then heated in BHI broth (pH 6·0) at 58°C, using a submerged coil apparatus. The TSB+G grown strains had greatly increased heat resistance, with the heating time needed to achieve a five-log inactivation, being increased two- to four-fold. The z -values of TSB+G and TSB-G grown cells were 4·7°C and 4·3°C, respectively. Increases in heat resistance with TSB+G-grown E. coli O157:H7 were also observed using milk and chicken broth, but not with apple juice. However, cross-protection was restored if the pH of the apple juice was increased from 3·5 to 4·5. The data indicate that pH-dependent acid resistance provides E. coli O157:H7 with cross-protection against heat treatments, and that this factor must be considered to estimate this pathogen's thermal tolerance accurately.  相似文献   

18.
Unpasteurized fruit juice and cider have been implicated in outbreaks of Escherichia coli O157:H7 and Salmonella infections, yet various processes used to clean and sanitize fruits before producing juice have not been thoroughly studied for their effectiveness in removing pathogens. The objective of this study was to evaluate cleaners used in the apple industry for their efficacy in removing E. coli O157:H7 and Salmonella from the surface of apples. E. coli O157:H7 was transformed with green fluorescent protein plasmid (pGFP). In addition to encoding for the production of GFP, the plasmid also encodes for ampicillin resistance. S. muenchen was adapted to grow in media containing 50 microg/ml nalidixic acid. The use of ampicillin and nalidixic acid resistant strains enabled enumeration of the pathogen without interference by microflora naturally present on apples. Unwaxed Red Delicious cv. apples were surface inoculated with 8.58 log10 cfu of E. coli O157:H7 and 8.11 log10 cfu of S. muenchen. Five commercial apple cleaners were applied at concentrations and exposure times recommended by manufacturers. Populations of E. coli O157:H7, S. muenchen, aerobic mesophiles, and yeasts and molds on apples treated with cleaners and water (control) were determined. Compared to washing with water, treatment with cleaners removed or killed up to 2.86, 3.11, 2.48, and 0.73 log10 cfu of E. coli O157:H7, S. muenchen, aerobic mesophiles, and yeasts and molds per apple, respectively. There were differences in the effectiveness of cleaners in removing pathogens, but pH (2.0 and 12.0) and concentration (1% and 5%) of cleaner, and time of exposure (0.5-2 min) were not correlated with magnitude of reduction in population. The use of some types of cleaners commercially formulated for apples may contribute significantly in attaining target 5-log10 reductions of pathogens on the fruit intended for unpasteurized juice production or the fresh produce market.  相似文献   

19.
A study was conducted to evaluate the effect of storing Escherichia coli O157:H7 in fruit or vegetable juices with or without pulp and/or calcium lactate, on the bacterial resistance to a simulated gastric fluid (SGF, pH 1.5). Apple, carrot, orange, and tomato juices containing pulp or freed from pulp by filtration were used in this study. Calcium lactate at about 1.4 g/l was added to juices to obtain calcium supplemented juices. Juices with or without pulp and/or calcium lactate were inoculated with E. coli O157:H7 and then were stored at 7 degrees C for 0, 1, 2, or 4 days. The acid resistance of cells stored in juices with or without pulp and/or calcium lactate was determined by incubating in SGF for 90 or 240 min at 37 degrees C. Cells stored in apple juice for 4 days, carrot juice for 2 days, and orange juice for 4 days with pulp only had greater acid resistance, while all cells stored in tomato juice with pulp had greater acid resistance than cells stored in juice without pulp. The D-values of cells stored in supplemented apple and orange juices with calcium lactate declined 1.7-3.5 fold, whereas D-values of cells stored in supplemented tomato juice decreased by about 1.4-fold when compared to cells stored in juice without calcium lactate after exposure in SGF. These results indicate that storing E. coli O157:H7 in juices with pulp had little or no effect on the acid resistance of cells during subsequent exposure in SGF. Calcium lactate supplemented into juices could dramatically decrease the ability of E. coli O157:H7 to survive in SGF, possibly reducing the risk of foodborne illness by juice products.  相似文献   

20.
Efficacy of Ozone Against Escherichia coli O157:H7 on Apples   总被引:5,自引:0,他引:5  
Apples were inoculated with Escherichia coli O157:H7 and treated with ozone. Sanitization treatments were more effective when ozone was bubbled during apple washing than by dipping apples in pre‐ozonated water. The corresponding decreases in counts of E. coli O157:H7 during 3‐min treatments were 3.7 and 2.6 log10 CFU on apple surface, respectively, compared to < 1 log10 CFU decrease in the stem‐calyx region in both delivery methods. Optimum conditions for decontamination of whole apples with ozone included a pretreatment with a wetting agent, followed by bubbling ozone for 3 min in the wash water, which decreased the count of E. coli O157:H7 by 3.3 log10CFU/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号