首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.  相似文献   

2.
Fly photoreceptor membranes were used to test the effect on defined biochemical reactions of light and of compounds causing photoreceptor excitation. Complementary electrophysiological studies examined whether putative second messengers excite the fly photoreceptor cells. This analysis revealed the following sequence of events: photoexcited rhodopsin activates a G protein by facilitating GTP binding. The G protein then activates a phospholipase C that generates inositol trisphosphate, which in turn acts as an internal messenger to bring about depolarization of the photoreceptor cell. Binding assays of GTP analogs and measurements of GTPase activity showed that there are 1.6 million copies of G protein per photoreceptor cell. The GTP binding component is a 41-kDa protein, and the light-activated GTPase is dependent on photoconversion of rhodopsin to metarhodopsin. Analysis of phospholipase C activity revealed that this enzyme is under stringent control of the G protein, that the major product formed is inositol trisphosphate, and that this product is rapidly hydrolyzed by a specific phosphomonoesterase. Introduction of inositol trisphosphate to the intact photoreceptor cell mimics the effect of light, and bisphosphoglycerate, which inhibits inositol trisphosphate hydrolysis, enhances the effects of inositol trisphosphate and of dim light. The interaction of photoexcited rhodopsin with a G protein is thus similar in both vertebrate and invertebrate photoreceptors. These G proteins, however, activate different photoreceptor enzymes: phospholipase C in invertebrates and cGMP phosphodiesterase in vertebrates.  相似文献   

3.
The cardiac sarcolemmal membrane cis -unsaturated fatty acid-sensitive phospholipase D hydrolyzes phosphatidylcholine to form phosphatidic acid. The functional significance of phosphatidic acid is indicated by its ability to increase [Ca(2+)](i)and augment cardiac contractile performance via the activation of phospholipase C. Accordingly, we tested the hypothesis that a defect occurs in the membrane level of phosphatidic acid and/or the responsiveness of cardiomyocytes to phosphatidic acid in congestive heart failure due to myocardial infarction. Myocardial infarction was produced in rats by ligation of the left coronary artery while sham-operated animals served as control. At 8 weeks after surgery, the experimental animals were at a stage of moderate congestive heart failure. Compared to sham controls, phosphatidic acid-mediated increase in [Ca(2+)](i), as determined by the fura 2-AM technique, was significantly reduced in failing cardiomyocytes. Immunoprecipitation of sarcolemmal phospholipase C isoenzymes using specific monoclonal antibodies revealed that the stimulation of phospholipase C gamma(1)and delta(1)phosphatidylinositol 4,5-bisphosphate hydrolyzing activities by phosphatidic acid was decreased in the failing heart. Although the activity of phospholipase C beta(1)in the failing heart was higher than the control, phosphatidic acid did not stimulate this isoform in control sarcolemma, and produced an inhibitory action in the failing heart preparation. Furthermore, the specific binding of phosphatidic acid to phospholipase C gamma(1)and delta(1)isoenzymes was decreased, whereas binding to phospholipase beta(1)was absent in the failing heart. A reduction in the intramembranal level of phosphatidic acid derived via cis -unsaturated fatty acid-sensitive phospholipase D was also seen in the failing heart. These findings suggest that a defect in phosphatidic acid-mediated signal pathway in sarcolemma may represent a novel mechanism of heart dysfunction in congestive heart failure.  相似文献   

4.
D English  G Taylor  J G Garcia 《Blood》1991,77(12):2746-2756
Neutrophils exposed to fluoride ion (F-) respond with a delayed and sustained burst of superoxide anion release that is both preceded by and dependent on the influx of Ca2+ from the extracellular medium. The results of this study demonstrate a similarly delayed and sustained generation of 1,2-diglyceride in F(-)-treated neutrophils, over 90% of which was 1,2-diacylglycerol. Diacylglycerol generation was not dependent on the presence of extracellular Ca2+. Conversely, in contrast to results obtained with other agonists, removal of extracellular Ca2+ markedly potentiated synthesis of diacylglycerol in F(-)-treated neutrophils. This effect was accompanied by a corresponding decrease in the recovery of phosphatidic acid. In either the presence or absence of extracellular Ca2+, phosphatidic acid accumulated before diacylglycerol in F(-)-treated cells, suggesting the latter was derived from the former. Consistent with this hypothesis, the phosphatidic acid phosphohydrolase inhibitor, propranolol, suppressed generation of diacylglycerol as it potentiated the accumulation of phosphatidic acid in F(-)-treated neutrophils. This effect was observed both in the presence and absence of extracellular Ca2+. Moreover, high levels of propranolol (160 mumol/L) effected complete inhibition of diacylglycerol generation in F(-)-treated neutrophils with a corresponding increase in phosphatidic acid generation. Phosphatidylethanol accumulated in neutrophils stimulated with F- in the presence of ethanol. The extent of phosphatidylethanol accumulation at all time points after addition of F- corresponded to decreased levels of both phosphatidic acid and diacylglycerol, indicating that phosphatidylethanol was derived from the phospholipase D-catalysed transphosphatidylation reaction. The results indicate that F- activates a Ca(2+)-independent phospholipase D, which appears to be the major, if not sole, catalyst for both phosphatidic acid and diacylglycerol generation in F(-)-treated neutrophils. Ca2+, mobilized as a result of F- stimulation and possibly as a consequence of phospholipase D activation, exerts a profound effect on cellular second messenger levels by modulating the conversion of phosphatidic acid to diacylglycerol.  相似文献   

5.
Unique among adenine nucleotides tested by filter binding assays, 3':5'-cyclic AMP binds to the G translocation factor. Binding is dependent on the presence of GTP, and is inhibited by GDP, by the analog 5'-beta,gamma-methylene GTP, and by the antibiotic fusidic acid. The cAMP seems to be released during the ribosome-dependent translocation of charged tRNA catalyzed by G factor. Bound cAMP inhibits GTPase and ribosome-associated degradation of messenger RNA, but does not inhibit protein synthesis. cAMP might thereby regulate the ratio of productive to degradative transits of ribosomes on messenger RNA, and this may account for some part of its profound effect on levels of specific bacterial messenger RNA species.  相似文献   

6.
We have assessed the binding of [alpha-32P]GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by NaDodSO4/PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with [alpha-32P]GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP and by 100 nM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) or GDP; binding was unaffected by 1 nM-1 microM ATP. One main GTP-binding protein (29.5 kDa) was detected in the membrane fraction, while three others (29, 27, and 21 kDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 kDa) were degraded by trypsin; another cytosolic protein (21 kDa) and the membrane-bound protein (29.5 kDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of [alpha-32P]GTP to the membrane-bound protein. GTP[gamma S] still stimulated phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTP[gamma S].  相似文献   

7.
The generation of oxygen radicals by polymorphonuclear leukocytes (PMNL) plays a pivotal role for host defense. Since ethanol reduced FMLP- but not PMA-induced superoxide ion (O2-) formation by PMNL, the effects of ethanol on second messenger systems in PMNL were studied. FMLP induced a biphasic rise in cytosolic calcium concentrations, [Ca2+]i. Ethanol treatment abolished the second phase (believed to reflect Ca2+ influx), an effect also observed in PMNL treated with La3+ or suspended in Ca(2+)-free buffer. The FMLP-induced inositol trisphosphate generation was unaffected by ethanol, whereas diacylglycerol formation was, as expected, markedly reduced. Propranolol, an inhibitor of diacylglycerol formation from phosphatidic acid, caused a prolonged transmembrane influx of Ca2+ and partially reversed the inhibitory effect of ethanol on FMLP-induced O2- production. Thus, the ability of ethanol to inhibit FMLP-induced O2- generation in neutrophils seems to be due to both impaired influx of Ca2+ across the plasma membrane and reduced phospholipase D-mediated generation of phosphatidic acid.  相似文献   

8.
M Dunlop  S A Metz 《Endocrinology》1992,130(1):93-101
Our recent studies have demonstrated the presence in neonatal islet cells and intact adult islets of a phosphatidylcholine-directed phospholipase D (PLD) which is activated after phorbol ester stimulation. The present study describes PLD activation in the presence of a carbohydrate insulin secretagogue. At the highest concentration tested (20 mM) the triose, glyceraldehyde, induced formation of phosphatidic acid in cells prelabeled with [14C]arachidonic acid or [3H]myristic acid (164 +/- 7 and 210 +/- 9% of basal phosphatidic acid values, respectively). Experimental confirmation of a concentration-dependent specific activation of PLD was provided by the formation of a transphosphatidylation product, phosphatidylethanol, after stimulation with glyceraldehyde in the presence of added ethanol (1.5%). Additionally, there was an early (within 5 min) rise in [14C]arachidonate-labeled diacylglycerol (139 +/- 7% of basal) accompanied by an increase in intracellular diacylglycerol mass (51 +/- 2 pmol/mg protein) and an increase in membrane-associated protein kinase C activity (183 +/- 5% of basal) which preceded the activation of PLD, as indicated by the time course of glyceraldehyde-stimulated phosphatidylethanol formation in the presence of ethanol. Pretreatment of islet cells with 2 microM 12-O-tetradecanoylphorbol-13-acetate for 18 h, to down-regulate protein kinase C, was without effect on diacylglycerol and phosphatidic acid production after 5 min but inhibited completely the production of phosphatidylethanol at 30 min. The phosphohydrolase inhibitor propranolol (100 microM) potentiated the accumulation of phosphatidic acid and phosphatidylethanol incubation following incubation with glyceraldehyde. These findings demonstrate for the first time that a physiological nutrient activates a phospholipase directed against endogenous phosphatidylcholine in intact islet cells; furthermore, they indicate a role for PLD in a delayed formation of phosphatidic acid in the islet cell. The finding of an early rise in glyceraldehyde-stimulated diacylglycerol (which may be formed de novo or by the action of phospholipase C), suggests that PLD is recruited by the activation of protein kinase C by this nutrient.  相似文献   

9.
10.
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.  相似文献   

11.
Abstract: The signal transductional mechanisms regulating the activation of NADPH oxidase, the respiratory burst enzyme in phagocytic cells, are not completely understood. Receptors for most physiologic stimuli trigger the activation of various phospholipases, including phospholipases A2, C, and D. The lipid mediators formed (arachidonic acid, 1,2-diacylglycerol, and phosphatidic acid) have been implicated as second messengers in the induction of the respiratory burst. In intact cells, we have correlated phospholipase D activation and the production of phosphatidic acid with the activation of NADPH oxidase, using the drug propranolol. Phosphatidic acid activated NADPH oxidase in a cell-free system, but the level of activation was low. 1,2-Diacylglycerol markedly enhanced NADPH oxidase activation by phosphatidic acid. The synergistic effect required the diacyl species, since mono- or tri-acylglycerols were ineffective. Phosphatidic acid could be replaced by either lysophosphatidic acid or phosphatidylserine, but not by phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol, suggesting specificity for an anionic phospholipid. Since other cell-free activators of NADPH oxidase (arachidonic acid, sodium dodecyl sulfate) are also anionic amphiphiles, phosphatidic acid may directly interact with an enzyme component(s). The targets for phosphatidic acid and diacylglycerol in the cell-free system are currently under investigation. These results emphasize the critical importance of phospholipases, particularly phospholipase D, in the regulation of the respiratory burst.  相似文献   

12.
S M Kharbanda  M L Sherman  D W Kufe 《Blood》1990,75(3):583-588
Guanine nucleotide binding proteins (G proteins) are regulatory molecules that couple membrane receptors to effector systems such as adenylate cyclase and phospholipase C. The alpha subunits of G proteins bind to guanosine 5'-diphosphate (GDP) in the unstimulated state and guanosine 5' triphosphate (GTP) in the active state. Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide), a specific inhibitor of inosine monophosphate (IMP) dehydrogenase, decreases guanylate synthesis from IMP in HL-60 promyelocytic leukemia cells and depletes intracellular guanine nucleotide pools. This study demonstrates that treatment of HL-60 cells with tiazofurin is associated with a fourfold increase in membrane binding sites for the nonhydrolyzable analogue GDP beta S. This increase in binding sites was associated with a 3.2-fold decrease in GDP beta S binding affinity. Similar findings were obtained with GTP gamma S. These effects of tiazofurin treatment on guanine nucleotide binding were also associated with decreased adenosine diphosphate-ribosylation of specific G protein substrates by cholera and pertussis toxin. The results further demonstrate that tiazofurin treatment results in inhibition of G protein-mediated transmembrane signaling mechanisms. In this regard, stimulation of adenylate cyclase by prostaglandin E2 was inhibited by over 50% in tiazofurin-treated cells. Furthermore, tiazofurin treatment resulted in inhibition of N-formylmethionylleucylphenylalanine-induced stimulation of phospholipase C. Taken together, these results indicate that tiazofurin acts at least in part by inhibiting the ability of G proteins to function as transducers of intracellular signals.  相似文献   

13.
Human platelets stimulated by epinephrine undergo enhanced turnover of phosphatidylinositol 4,5-bisphosphate, accumulate inositol trisphosphate, diacylglycerol, and phosphatidic acid, and phosphorylate a 47-kDa protein. All of these phenomena indicate stimulation of phospholipase C. These responses are blocked completely by inhibitors of alpha 2-adrenergic receptors (yohimbine), cyclooxygenase (aspirin or indomethacin), phospholipase A [2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (ONO-RS-082)], Na+/H+ exchange [ethylisopropylamiloride (EIPA)], fibrinogen binding to glycoprotein IIb/IIIa (antibody A2A9), Ca2+/Mg+ binding (EDTA), or removal of fibrinogen. Epinephrine evokes (i) an increased turnover of ester-linked arachidonic acid in aspirin treated platelets that is inhibited by ONO-RS-082, EDTA, yohimbine, or the absence of fibrinogen and (ii) a rapid cytoplasmic alkalinization that is inhibited partially by blockage of cyclooxygenase activity and completely by A2A9 or EIPA. In contrast, when incubated with subaggregatory concentrations of the prostaglandin H2/thromboxane A2 analogue [(15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic acid (U46619) and epinephrine, aspirin-treated platelets show a potentiation of phospholipase C activation that is unaffected by the above inhibitors. We propose that epinephrine, in promoting exposure of glycoprotein IIb/IIIa sites for fibrinogen binding, leads to a cytoplasmic alkalinization, which, in conjunction with local shifts in Ca2+, promotes low-level activation of phospholipase A. The resulting free arachidonic acid is converted to cyclooxygenase products, which, potentiated by epinephrine, activate phospholipase C. This further amplifies the initial stimulatory response.  相似文献   

14.
Role of 5S RNA in the Functions of 50S Ribosomal Subunits   总被引:11,自引:4,他引:11       下载免费PDF全文
50S ribosomal subunits from Bacillus stearothermophilus can be reconstituted from their dissociated components, namely a 5S RNA-free protein fraction, a 5S RNA-free 23S ribosomal RNA fraction, and purified 5S RNA. The biological activity of reconstituted particles in polypeptide synthesis is dependent on the presence of 5S RNA. In the absence of 5S RNA, particles are produced that have greatly reduced activity in (a) polypeptide synthesis directed by synthetic, as well as natural, messenger RNA, (b) peptidyl transferase assay, (c) [(3)H]UAA binding dependent on peptide chain termination factor R1, (d) G factor-dependent [(3)H]GTP binding, and (e) codon-directed tRNA binding assayed in the presence of 30S subunits. Thus, 5S RNA is an essential 50S ribosomal component.  相似文献   

15.
The responses to alpha- and gamma-thrombin were studied in normal and Bernard-Soulier platelets labelled with [32P]phosphate, to investigate the relationship between thrombin binding to the platelet membrane glycoprotein Ib (GPIb) and thrombin-induced platelet activation. For this purpose we conducted parallel studies of the kinetics of platelet aggregation, granule secretion, hydrolysis of polyphosphoinositides, formation of phosphatidic acid, phosphorylation of the myosin light chain (p20) and of the 43 kDa protein (p43), and thromboxane B2 formation. Like alpha-thrombin, gamma-thrombin activated control platelets via all the above metabolic responses, but only after a prolonged lag. In Bernard-Soulier platelets, alpha-thrombin induced polyphosphoinositide hydrolysis and phosphatidic acid formation, p20 and p43 phosphorylation, thromboxane B2 formation, secretion and to a lesser extent aggregation, but only after a prolonged lag. The metabolic responses of Bernard-Soulier platelets to gamma-thrombin were very similar to those of control platelets. We have previously showed that GPIb which is not present in Bernard-Soulier platelets binds alpha- but not gamma-thrombin. The present results indicate that thrombin binding to GPIb is not directly coupled either with the activation of phospholipase C specific to polyphosphoinositides, or with the activation of protein kinase C and phospholipase A2. However, thrombin binding to GPIb appears to promote an early mechanism which accelerates all the platelet responses.  相似文献   

16.
In the rod outer segments (ROS) of bovine retina, light activation of phospholipase A2 has been shown to occur by a transducin-dependent mechanism. In this report, the transducin-mediated stimulation of phospholipase A2 is shown to require dissociation of the alpha beta gamma heterotrimer. Addition of transducin to dark-adapted transducin-poor ROS stimulated phospholipase A2 activity only with coincident exposure to white light or, in the dark, with addition of the hydrolysis-resistant GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]). Both light and GTP[gamma-S] induced dissociation of the transducin subunits and led to severalfold increases in the phospholipase A2 activity of transducin-rich, but not transducin-poor, ROS. In contrast, pertussis toxin treatment of transducin, which stabilizes the associated state of this G protein, prevented the stimulation of phospholipase A2 by exogenous transducin in the presence of light. Addition of purified transducin subunits to dark-adapted transducin-poor ROS revealed that phospholipase A2 stimulation occurred by action of the beta gamma subunits. This is in contrast to the transducin-mediated increase in cGMP phosphodiesterase activity, where activation occurs by action of the alpha subunit. The alpha subunit, which itself slightly stimulated phospholipase A2 activity, inhibited the beta gamma-induced stimulation of phospholipase A2. This inhibition appears to be the result of subunit reassociation since addition of GTP[gamma-S] abolished the inhibitory effect of the alpha subunit on the beta gamma-induced increase in phospholipase A2, while pertussis toxin treatment of the subunits further inhibited phospholipase A2 activity. Modulation of phospholipase A2 activity by the transducin subunit is, therefore, a mode of action for these subunits in signal transduction.  相似文献   

17.
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.  相似文献   

18.
Inhibition of prostaglandin synthetase in human rectal mucosa.   总被引:11,自引:3,他引:11       下载免费PDF全文
C J Hawkey  M Lo Casto 《Gut》1983,24(3):213-217
Miniaturised methods have been used to construct dose-response curves for the effects of inhibitory drugs on prostaglandin synthesis using individual rectal biopsies obtained from patients with ulcerative colitis. The potency of different drugs has been compared. Sulphasalazine, 5 amino salicylic acid (5-ASA) and N-acetyl 5-ASA inhibited prostaglandin synthesis at high concentration, but sulphapyridine and prednisolone did not. Indomethacin and flurbiprofen were considerably more potent inhibitors. These data imply that sulphasalazine does not act by simple inhibition of prostaglandin synthesis but leave open the possibility that sulphasalazine or 5-ASA may be inhibitors of the synthesis of related lipoxygenase products.  相似文献   

19.
Yang  X; Sun  L; Ghosh  S; Rao  AK 《Blood》1996,88(5):1676-1683
Signal transduction on platelet activation involves phosphoinositide- specific phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositides and formation of inositol-1,4,5-triphosphate [I(1,4,5)P3], which mediates Ca2+ mobilization, and diacylglycerol (DG), which activates protein kinase C (PKC) to phosphorylate a 47-kD protein (Pleckstrin). We studied these events in two related patients previously reported (Blood 74:664, 1989) to have abnormal aggregation and 14C-serotonin secretion, and impaired intracellular Ca2+ mobilization in response to several agonists. Thrombin-induced I(1,4,5)P3 and phosphatidic acid formation were diminished. Pleckstrin phosphorylation was impaired on activation with thrombin, platelet- activating factor, and ionophore A23187, but was normal with PKC activator 1,2-dioctonyl-sn-glycerol (DiC8). Ca2+ mobilization induced by guanosine triphosphate (GTP) analog guanosine 5'-0-(3 thiotriphosphate) (GTP gamma S) was diminished. Pretreatment with either A23187 or DiC8 did not correct the impaired adenine diphosphate- induced secretion; however, upon stimulation with A23187 plus DiC8, pleckstrin phosphorylation and secretion were normal, indicating that both PKC activation and Ca2+ mobilization are essential for normal secretion. We conclude that these patients have a unique inherited platelet defect in formation of two key intracellular mediators [I(1,4,5)P3 and DG] and in the responses mediated by them due to a defect in postreceptor mechanisms of PLC activation.  相似文献   

20.
The relation of inosine-5'-monophosphate dehydrogenase (IMPDH; the rate-limiting enzyme in GTP synthesis) to mitogenesis was studied by enzymatic assay, immunoblots, and RT-PCR in several dissimilar transformed pancreatic ss-cell lines, using intact cells. Both of the two isoforms of IMPDH (constitutive type 1 and inducible type 2) were identified using RT-PCR in transformed beta cells or in intact islets. IMPDH 2 messenger RNA (mRNA) and IMPDH protein were both regulated reciprocally by changes in levels of their end-products. Flux through IMPDH was greatest in rapidly growing cells, due mostly to increased uptake of precursor. Glucose (but not 3-0-methylglucose, L-glucose, or fructose) further augmented substrate uptake and also increased IMPDH enzymatic activity after either 4 or 21 h of stimulation. Serum or ketoisocaproate also increased IMPDH activity (but not uptake). Two selective IMPDH inhibitors (mycophenolic acid and mizoribine) reduced IMPDH activity in all cell lines, and, with virtually identical concentration-response curves, inhibited DNA synthesis (assessed as bromodeoxyuridine incorporation) in response to glucose, serum, or ketoisocaproate. Inhibition of DNA synthesis was reversible, completely prevented by repletion of cellular guanine (but not adenine) nucleotides, and could not be attributed to toxic effects. Despite the fact that modulation of IMPDH expression by guanine nucleotides was readily detectable, glucose and/or serum failed to alter IMPDH mRNA or protein, indicating that their effects on IMPDH activity were largely at the enzyme level. Precursors of guanine nucleotides failed, by themselves, to induce mitogenesis. Thus, adequate IMPDH activity (and thereby, availability of GTP) is a critical requirement for beta-cell proliferation. Although it is unlikely that further increases in GTP can, by themselves, initiate DNA synthesis, such increments may be needed to sustain mitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号