首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
蒙卡-燃耗程序系统及ADS基准题的计算   总被引:2,自引:3,他引:2  
为对核废物进行嬗变,提出了加速器驱动的次临界系统(ADS)。由于外中子源的存在及中子注量率的各向异性,ADS的核计算和常规反应堆的有较大的差别,原则上需要应用中子输运理论的方法,目前尚无成熟的计算方法与程序。为此,IAEA提出了ADS基准题。基准题分为几个阶段,第一阶段主要致力于ADS的中子性能分析,检验现有核数据库、计算方法和程序的可靠性及不确定性。开发了MC-NT-ORIGEN2程序系统,并对该基准题进行了给定次临界点下的富集度、零燃耗下的径向与轴向的功率分布、反应性空泡效应、外源价值和燃耗的计算,取得了满意的结果。  相似文献   

2.
Using the thermal hydraulic code MERSAT detailed model including primary and secondary loop was developed for the IAEA's reference research reactor MTR 10 MW. The developed model enables the simulation of expected neutronic and thermal hydraulic phenomena during normal operation, reactivity and loss of flow accidents.Two different loss of flow accident (LOFA) have been simulated using slow and fast decrease time of core mass flow. In both cases the expected flow reversal from downward forced to upward natural circulation has been successfully simulated. The results indicate that in both accidents the limit of onset of subcooled boiling was not arrived and consequently no exceed of design limits in term of thermal hydraulic instability or DNB is observed. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermal hydraulic system codes.  相似文献   

3.
The IAEA's gas-cooled reactor program has coordinated international cooperation for an evaluation of a high temperature gas-cooled reactor's performance, which includes a validation of the physics analysis codes and the performance models for the proposed GT-MHR. This benchmark problem consists of the pin and block calculations and the reactor physics of the control rod worth for the GT-MHR with a weapon grade plutonium fuel. Benchmark analysis has been performed by using the HELIOS/MASTER deterministic code package and the MCNP Monte Carlo code. The deterministic code package adopts a conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation.In order to solve particular modeling issues in GT-MHR, recently developed technologies were utilized and new analysis procedure was devised. Double heterogeneity effect could be covered by using the reactivity-equivalent physical transformation (RPT) method. Strong core–reflector interaction could be resolved by applying an equivalence theory to the generation of the reflector cross sections. In order to accurately handle with very large control rods which are asymmetrically located in a fuel and a reflector block, the surface dependent discontinuity factors (SDFs) were considered in applying an equivalence theory. A new method has been devised to consider SDFs without any modification of the nodal solver in MASTER.All computational results of the HELIOS/MASTER code package were compared with those of MCNP. The multiplication factors of HELIOS for the pin cells are in very good agreement with those of MCNP to within a maximum error of 693 pcm Δρ. The maximum differences of the multiplication factors for the fuel blocks are about 457 pcm Δρ and the control rod worths of HELIOS are consistent with those of MCNP to within a maximum error of 3.09%. On considering a SDF in the core calculations, the maximum differences of the control rod worths are significantly decreased to be 7.7% from 21.5%. It is showed that there are good consistencies between the deterministic code package and the Monte Carlo code from the results of these benchmark calculations. Therefore, the HELIOS/MASTER 2-step procedure can be used as a standard reactor physics analysis tool for a prismatic VHTR.  相似文献   

4.
The OECD 2-D benchmark problem C5G7 MOX was calculated by the CRX code which is based on the method of characteristics. A modular ray tracing scheme and parallel computation in angular domain are implemented to reduce computer memory and computation time. In this paper, we present results of calculations, including sensitivity studies performed with varying values for some calculation parameters.  相似文献   

5.
Analysis was conducted on the Lift-Off experiment IFA-610.1 in Halden reactor by the FEMAXI-6 code using detailed measured data in the test-irradiation. Fuel center temperature was calculated on the two assumptions, i.e. (1) an enhanced thermal conductance across the pellet-clad bonding layer is maintained during the cladding creep-out by over-pressurization, and (2) the bonding layer is broken by the cladding creep-out, and these results were compared with the measured data to analyze the effect of the creep-out by over-pressure inside the test pin. The measured center temperature rise was higher by a few tens of K than the prediction performed on the assumption (1), though this difference was much smaller than the predicted rise on the assumption (2). Therefore, it is appropriate to attribute the measured center temperature rise to the decrease of effective thermal conductance by irregular re-location of pellet fragments, etc. which was caused by cladding creep-out.  相似文献   

6.
This article describes the transient models of the neutronics code VITAS that are used for solving time-dependent, pinresolved neutron transport equations. VITAS uses the stiffness confinement method (SCM) for temporal discretization to transform the transient equation into the corresponding transient eigenvalue problem (TEVP). To solve the pin-resolved TEVP, VITAS uses a heterogeneous variational nodal method (VNM). The spatial flux is approximated at each Cartesian node using finite elements i...  相似文献   

7.
Incorporation of full three-dimensional models of the reactor core into system thermal–hydraulic transient codes allows better estimation of interactions between the core behavior and plant dynamics. Considerable efforts have been made in various countries and organizations to verify and validate the capability of the so-called coupled codes technique. For these purposes appropriate Light Water Reactor (LWR) transient benchmarks based upon programmed transients performed in Nuclear Power Plants (NPP) were recently developed on a higher ‘best-estimate’ level. The reference problem considered in the current framework is a Main Coolant Pump (MCP) switching-on transient in a VVER1000 NPP. This event is characterized by a positive reactivity addition as consequence of the increase of the core flow. In the current study the coupled RELAP5/PARCS code is used to reproduce the considered test. Results of calculation were assessed against experimental data and also through the code-to-code comparison.  相似文献   

8.
9.
To assess the feasibility of the 31% Pu-MOX fuel rod design of reduced-moderation water reactor (RMWR) in terms of thermal and mechanical behaviors, a single rod assumed to be irradiated in the core of RMWR up to 106 GWd/tHM has been analyzed by a fuel performance code FEMAXI-RM which is an extended version of FEMAXI-6 code. In the analysis, design specifications of fuel rod and irradiation conditions have been input, and available models of both MOX fuel and UO2 fuel have been used as appropriate. The results are: fission gas release is several tens of percent, rod internal pressure does not exceed the coolant pressure, and the highest fuel center temperature is 2400 K, while cladding diameter increase caused by pellet swelling is within 1% strain. These predictions suggest that the MOX fuel rod integrity will be held during irradiation in RMWR, though actual behavior of MOX pellet swelling and cladding oxidation require to be investigated in detail.  相似文献   

10.
The IAEA’s reference research reactor MTR-10 MW has been modeled using the code MERSAT. The developed MERSAT model consists of detailed representation of primary and secondary loops including reactor pool, bypass, main pump, heat exchanger and reactor core with the corresponding neutronics and thermalhydraulic characteristics. Following the successful accomplishment of the steady state operation at nominal power of 10 MW, reactivity insertion accident (RIA) for three different initial reactivity values of $1.5/0.5 s, $1.35/0.5 s and $0.1/1.0 s have been simulated. The predicted peaks of reactor power, hot channel fuel, clad and coolant temperatures demonstrate inherent safety features of the reference MTR reactor. Only in case of the fast RIA of $1.5/0.5 s, where the peak power of 133.66 MW arrived 0.625 s after the start of the transient, the maximum hot channel clad temperature arrives at the condition of subcooled boiling with the subsequent void formation. However, due to the strong negative reactivity feedback effects of coolant and fuel temperatures the void formation persists for a very short time so that thermalhydraulic conditions remained far from exceeding the safety design limits of thermalhydraulic instability and DNB. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermalhydraulic system codes.  相似文献   

11.
The author developed a code FEMAXI–V to analyze the behaviors of high burnup LWR fuels. FEMAXI–V succeeded the basic structure of code FEMAXI–IV, and incorporated such new models and functions as fuel thermal conductivity degradation with burnup, alliance with burnup analysis code which gives radial power profile and fast neutron flux, etc. In the present analysis, coolant conditions, detailed power histories and specifications of the fuel rods DH and DK of IFA-519.9 irradiated in Halden reactor were input, and calculated rod internal pressures were compared with experimental data for the range of 25–93 MWd kg−1 UO2, and factors affecting pellet temperature were discussed. Also some sensitivity studies were conducted with respect to the effect of swelling rate and grain growth. As a result, it is found that the prediction is sensitive to the models of thermal conductivity and swelling rate of fuel, and FEMAXI–V analytical system proved to give a reasonable prediction even in the high burnup region.  相似文献   

12.
Assessment of the reactor fuel composition during the irradiation time, fuel management and criticality safety analysis require the utilization of a validated burnup calculation code system. In this work a newly developed burnup calculation code system, IRBURN, is introduced for the estimation and analysis of the fuel burnup in LWR reactors. IRBURN provides the full capabilities of the Monte Carlo neutron and photon transport code MCNP4C as well as the versatile code for calculating the buildup and decay of nuclides in nuclear materials, ORIGEN2.1, along with other data processing and linking subroutines. This code has the capability of using different depletion calculation schemes.  相似文献   

13.
14.
利用压水堆换料优化基准问题,对文献提出的特征统计算法进行了研究,结果表明,特征统计算法可以比较高效地搜索到接近全局最优的解。此外,论文还利用基准题对特征统计算法的优化搜索机理进行了直观的演示。  相似文献   

15.
16.
17.
This paper presents the development and validation of a MNSR-RELAP5 model. MNSR is a 30 kW, light-water moderated and cooled, beryllium-reflected, tank in pool type research reactor. A RELAP5 model was set up to simulate the entire MNSR system. The model represents all reactor components of primary and secondary loops with the corresponding neutronic and thermal hydraulic characteristics. Under the MNSR operation conditions of natural circulation, normal operation, step reactivity transients and reactivity insertion accidents are simulated.  相似文献   

18.
The current study emphasizes an aspect related to the assessment of a model embedded in a computer code. The study concerns more particularly the point neutron kinetics model of the RELAP5/Mod3 code which is worldwide used. The model is assessed against positive reactivity insertion transient taking into account calculations involving thermal-hydraulic feedback as well as transients with no feedback effects. It was concluded that the RELAP5 point kinetics model provides unphysical power evolution trends due most probably to a bug during the programming process.  相似文献   

19.
Super-homogenisation (SPH) factors were generated by a modified version of the code DYN3D for PWR fuel assemblies in hot-zero-power states defined in the OECD MOX/UO2 Benchmark. SPH factors averaged for each pin-material type and factors for each individual pin position were produced. The application of the SPH factors improves the accuracy of DYN3D calculations, especially for configurations with control rods inserted.  相似文献   

20.
In the light of the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations, which were not possible few years ago, can now be performed. Nowadays, it becomes possible to switch to new generation of computational tools, namely, coupled code (CC) technique. The application of such method is mandatory for the analysis of transient events where strong coupling between the core neutronics and the primary circuit thermal-hydraulics exits, and more especially when asymmetrical processes take place in the core leading to local space-dependent power generation. Through the current study, a demonstration of the maturity level achieved in the calculation of 3-D core performance during complex accident scenarios is emphasized. The study is followed by a typical application through which the main features and limitations of this technique are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号