首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 609 毫秒
1.
微生物燃料电池处理含铬废水并同步产电   总被引:3,自引:1,他引:2  
以葡萄糖为阳极燃料、含铬废水为阴极液,碳毡为阳极、石墨板为阴极构建了双室微生物燃料电池,考察了阳极条件(底物浓度)及阴极条件(pH、初始六价铬浓度)对含铬废水的降解及MFC的产电性能的影响.结果表明低阴极液pH和高初始Cr(Ⅵ)浓度能改善MFC产电性能.当pH=2、初始六价铬浓度为177 mg/L、反应时间为10 h时,最大输出功率为108 mW/m~2,六价铬去除率为92.8%.阳极底物浓度对微生物燃料电池的性能也有影响.在微生物燃料电池中,阴极极化较小,表明该燃料电池有稳定的性能,微生物燃料电池对含铬废水的处理有应用潜力并能同步产电.  相似文献   

2.
以沼液为原料的微生物燃料电池产电降解特性   总被引:3,自引:2,他引:1       下载免费PDF全文
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kW,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

3.
对利用单室空气阴极微生物燃料电池(MFC)降解水中红霉素(ERY)进行了研究。结果表明,ERY的加入使MFC阳极上的产电菌活性受到抑制,ERY浓度越大,对产电菌抑制性越强。当ERY质量浓度为30 mg/L时,MFC最大功率密度为400 mW/m^2,ERY降解率为(83.21±1.4)%,COD去除率为(84.91±2.1)%。加入ERY后,阳极微生物群落发生改变,但主要物种相同且数量较大,厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和变形菌门(Proteobacteria)这3类产电菌门为微生物燃料电池的性能发挥了重要作用。  相似文献   

4.
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd2+的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd2+去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd2+去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd2+去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd2+去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。  相似文献   

5.
初步探讨了用双室微生物燃料电池(MFC)净化含锌废水,同时降解有机废水。试验选用氧化沟厌氧段污泥为阳极底物,采用淀粉配制有机废水,在外接电阻为10Ω的情况下,启动MFC去除阴极室中的Zn2+,降解有机物。结果表明,当阳极室CODCr的初始质量浓度为1 230 mg/L,阴极室Zn2+的质量浓度为1 000 mg/L时,反应6 d后,获得输出电压为25 mV,输出功率为250 mW/m3。在阳极室,溶液CODCr的质量浓度从1 230 mg/L逐渐降解到280 mg/L,CODCr的最大去除率为77.2%;在阴极室,192 h后,Zn2+的去除率为35%。Zn2+的净化与有机物的降解具有关联性。试验也初步证明,微生物燃料电池具有处理含锌废水和有机废水,并同时产电的优势,这将是今后含锌废水处理的一个新的研究领域。  相似文献   

6.
利用微生物燃料电池同步降解沼液和三苯基氯化锡   总被引:2,自引:1,他引:1       下载免费PDF全文
微生物燃料电池(MFC)作为一种同步产电和除污的新型电化学装置,为有效处理难降解有机污染物提供了一种途径。基于阴极Fenton反应,提出了一种耦合典型双室MFC中阳极沼液产电及阴极降解有机锡的新方法。结果表明,阳极产电生物膜经驯化后MFC的最高电压提高了50.32%,而且电压稳定时间延长了1倍。MFC运行结束后,阳极沼液COD、总氮、总磷的去除率分别为85.35%±1.53%、59.20%±5.24%、44.98%±3.57%。阴极三苯基氯化锡(TPTC)的降解率随其初始浓度增加而降低。在添加100 μmol·L-1 TPTC时,MFC的最高输出电压为280.2 mV,最大功率密度为145.62 mW·m-2。TPTC在14 d后完全降解,降解效率为91.88%,降解速率约为0.273 μmol·L-1·h-1。研究结果可为利用MFC同步处理阳极有机废水和阴极有机污染物的实际应用提供基础支持。  相似文献   

7.
阴极电Fenton法处理硝基苯酚模拟废水的研究   总被引:14,自引:2,他引:12  
以活性炭纤维(ACF)为阴极,不锈钢片为阳极,在阴极通空气,于10V槽电压和57A/m^2的电流密度下电生Fenton试剂,对硝基苯酚模拟废水进行了降解研究。在最佳工艺条件下,对CODCr为800mg/L的硝基苯酚模拟废水,CODCr去除率达72.0%,硝基苯酚去除率达82.8%。  相似文献   

8.
高效双室微生物燃料电池的运行特性   总被引:1,自引:0,他引:1  
微生物燃料电池(MFC)在产生电流的同时还能处理糖蜜废水和电镀废水,并能从电镀废水中回收金属单质。本实验确定了电镀废水阴极液对双室微生物燃料电池产电性能的影响,阴极液分别采用银离子、铜离子和锌离子溶液作为MFC的阴极液,其初始浓度均配成1000mg/L。结果表明,锌离子作为阴极时MFC的产能效果最不理想,功率密度仅为1.9×10-6mW/m2。阴极为铜离子溶液时,可以获得相对大一些的功率密度(13.9mW/m2)。产能效果最好的是银离子阴极MFC,在电流密度为82.7mA/m2其获得最大功率密度为23.1mW/m2,COD去除率为71%,且其重金属去除率最大(72%),远远高于锌离子和铜离子。研究表明,重金属离子可以作为微生物燃料电池的阴极电子受体,MFC可以将有机废水中的化学能直接转化为电能,同时将重金属还原,具有显著的环境效益和经济效益。  相似文献   

9.
电化学制备高铁酸盐及其氧化降解对硝基苯酚的研究   总被引:1,自引:0,他引:1  
采用中端设立离子隔膜缓冲室的电解槽制备高铁酸盐,以直径为1.2 mm的细铁丝为阳极,铜片为阴极,探索了不同缓冲室容积与时间对高铁酸盐产率的影响,在一定电解条件下可得浓度为43.33 mmo·L-1的高铁酸盐,并以此产物氧化降解对硝基苯酚模拟废水.结果表明,高铁酸盐具有良好的氧化降解对硝基苯酚的性能,当高铁酸钾与对硝基苯酚的摩尔比为7:1时,反应10 min后对硝基苯酚COD去除率达到60.64%;通过GC/MS分析反应产物,对硝基苯酚能够有效地去除.  相似文献   

10.
微生物燃料电池(MFC)是一种利用微生物做催化剂,处理废水的同时能产电的新型污水处理技术,因其"变废为宝"的能力而得到快速的发展。其中,以空气做阴极的单室MFC,因其省却了不断添加阴极液的过程、提高功率输出的同时降低成本而受到越来越多的关注。垃圾渗滤液中含有高浓度的COD和氨氮,可生化性差、生物处理难度大。为了寻找高效经济的渗滤液处理技术,本项目通过构建单室微生物燃料电池,分析垃圾渗滤液在MFC中的处理效果及产电性能,结果表明,当以PTEF为扩散层时,最高输出电压2.005 V,最高功率密度为3.2 W?m-2,均高于PDMS扩散层;以PTEF为扩散层制作空气阴极对垃圾渗滤液中的COD和氨氮进行处理,去除率分别为90%和78%,运行12~16 d最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号