首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
Various methods for direct and indirect determination of LLD and CMOD were used to determine J from SENB specimens in three different steels. The influence of the displacement measurement on J is discussed, and shows that the values of J using LLD determined from clip gauge methods to the ASTM E1820 or ISO 12135 standards are consistent with values of J determined from CMOD (either directly or using clip gauge methods), as defined in ASTM E1820. From this work it is recommended that standard methods such as ISO 12135 should permit load‐CMOD and load‐LLD as alternative methods to determine J. Methods to determine LLD by corrections to the ram displacement were also shown to be effective in determining J, for applications where the use of clip gauges may be challenging, such as fracture toughness testing in sour environments, dynamic tests, or testing at very high temperature.  相似文献   

2.
Recently released, BS 8571:2014 standard offers an alternative for the experimental determination of fracture toughness and resistance curves of metallic materials from SE(T) specimens. Similar in stress conditions and constraint to cracked tubes, specimens in SE(T) geometry should yield less conservative toughness values than conventional high‐constraint specimens, such as SE(B) geometry. However, the convention to determine the J‐integral fracture toughness proposed in the new BS standard is different from ASTM standards. In this work, SE(T) and SE(B) specimens of similar dimensions of a tough high‐strength seamless pipe steel were tested following the BS 8571:2014 and ASTM E1820‐16 standards, respectively. Because of the different standardized definitions, SE(T) specimens yield lower fracture toughness than SE(B) specimens, which could lead to more conservative results in structural integrity analysis. This investigation also suggests the introduction of the blunting line concept in the BS 8571:2014 standard in order to minimize this problem.  相似文献   

3.
ABSTRACT The aim of this work is to propose procedures for the measurement of the fracture toughness of fibre metal laminates (FMLs) reinforced with unidirectional fibres of aramid or glass. Experimental techniques for fracture toughness evaluation by using Compact (C(T)) and Single‐Edge Bend (SE(B)) specimens obeying ASTM standards are introduced. Procedures from the standard for thick metallic materials were modified in order to overcome problems, which can arise when testing FMLs – that is, specimen buckling, indentations and crack growth in planes other than the plane of the fatigue pre‐crack or notch. The methodology proposed was experimentally tested leading to satisfactory results.  相似文献   

4.
Ships and offshore structures may be operated in areas with seasonal freezing temperatures and extreme environmental conditions. While current standards state that attention should be given to the validity of fatigue design curves at subzero temperatures, studies on fatigue strength of structural steel at subzero temperatures are scarce. This study addresses the issue by analysing the fatigue strength of welded steel joints under subzero temperatures. Although critical weld details in large welded structures are mostly fillet‐welded joints, most published data are based on fatigue crack growth rate specimens cut out of butt‐welded joints. This study analyses fillet‐welded specimens at ?20°C and ?50°C against controls at room temperature. Significantly higher fatigue strength was measured in comparison to estimates based on international standards and data from design codes even at temperatures far below the allowed service temperature based on fracture toughness results.  相似文献   

5.
Methods of determining fracture toughness from specimens of thickness lower than that required by ASTM Standard, E399 were studied using aluminum and titanium alloy specimens. In thin specimens in which crack growth initiation is clearly marked by a sudden change in the slope of the load-displacement curve, the stress intensity at the crack growth initiation point was found to be the same as the standard fracture toughness value. Crack growth initiation was more easily identifiable in the aluminum alloys than in the titanium alloy, although the latter was more brittle. Side grooves enable identification of crack growth initiation in thinner specimens, reducing considerably the thickness requirement for fracture toughness testing. A nearly straight crack front was found to be essential for obtaining reproducible results. Sharp and deep side grooves produced fatigue cracks leading at the edges.  相似文献   

6.
The multiple specimen J 0.2/BL initiation fracture toughness test procedure from the ISO standard, ISO 12135:2002, is evaluated using the EURO fracture toughness data set. This standard is also compared with the ASTM standard, ASTM E 1820, multiple specimen J Ic procedure. The EURO round robin data set was generated to evaluate the transition fracture toughness methods for steels. However, many of the tests resulted in ductile fracture behavior giving final J versus ductile crack extension points. This is the information that is measured in a multiple specimen J initiation fracture toughness test. The data set has more than 300 individual points of J versus crack extension with four different specimen sizes. It may be the largest data set of that type produced for one material. Therefore, its use to determine J initiation values can provide an important evaluation of the standard procedures. The results showed that a J 0.2/BL value could be determined from the ISO standard for three of the four specimen sizes, the smallest size did not meet the specimen size requirement on J. The construction line slopes in this method are very steep compared with the ASTM construction line slopes. This resulted in low J initiation values, about a factor of two lower than the one from the ASTM method. Of the various criteria imposed to determine a valid J 0.2/BL value, the one limiting the maximum J value was the most questionable. It had an effect of eliminating small specimen data that was identical to acceptable large specimen data.  相似文献   

7.
The objective of this work was the evaluation of crack growth resistance curves ( J–R curves) of commercial GLARE® 3 5/4 laminates at −50 °C. The experimental evaluation of these curves was performed on 50‐mm‐wide compact tension specimens through the unloading compliance technique. The tests were based on the ASTM E1820 standard with minor modifications. Additionally, tensile tests were also performed at −50 °C on dogbone specimens according to the ASTM E8M standard. Comparisons between low and room temperature properties indicate that the material preserves both its tensile strength and fracture toughness at −50 °C, although low temperature J–R curves presented smaller slopes than the room temperature ones after the onset of stable crack growth.  相似文献   

8.
Specimen size, crack depth and loading conditions may effect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the master curve standard ASTM E1921-97, which is based on technology developed at VTT Manufacturing Technology. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases, this may lead to unnecessary repairs or even to an early “retirement” of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J small scale yielding correction, Q-parameter and the Tstress. Here, a relation between the Tstress and the master curve transition temperature T0 is experimentally developed and verified. As a result, a new engineering tool to assess low constraint geometries with respect to brittle fracture has been obtained.  相似文献   

9.
Methods for determining crack tip opening displacement (CTOD) given in national and international standards are compared for steels with a range of strain hardening characteristics. Crack tip opening displacement measurements were made from single‐edge notched bend notches using a silicone rubber casting method. The finite element model produced good agreements with predictions of these CTOD measurements. The versatility of the finite element model enabled CTOD from the original crack tip and the 45° intercept method to be compared. The 45° CTOD generally underestimates the original crack tip CTOD, and is less useful for conditions with stable crack extension. Apart from the high strain hardening material, CTOD calculated using BS 7448‐1, WES 1108 (JWES), and ASTM E1820 was slightly lower than the values determined from silicone measurements and modelling, which is conservative. ASTM E1820 gave the largest underestimation of CTOD, whilst BS 7448‐1 may be unsuitable for higher strain hardening steels, where the standard predicts higher CTOD than measured from the replica. JWES gives the most consistent estimation of CTOD for steels with a wide range of strain hardening values.  相似文献   

10.
There are presently a magnitude of different fracture toughness testing standards that have different criteria for fatigue pre-cracking specimens prior to testing. The reason for the criteria is that too high pre-fatigue load may influence the subsequently measured fracture toughness value. The criteria have to a large extent been developed specifically for each standard in question and this has lead to the considerable variability in the criteria. The basic reason for the pre-fatigue having an effect on the fracture toughness is the warm pre-stress (WPS) effect. Here, existing data relating to pre-fatigue load levels are examined with the help of a newly developed simple WPS correction and a criteria and correction procedure for too high pre-fatigue loads are proposed. The new criteria focuses on brittle fracture, but is equally applicable for ductile fracture, thus enabling a unification of pre-fatigue criteria in different fracture toughness testing standards.  相似文献   

11.
《Composites》1995,26(4):243-255
This paper summarizes results from a series of interlaboratory round robin tests (RRTs) performed in order to establish a JIS standard for mode I interlaminar fracture toughness test using double cantilever beam (DCB) specimens. For the case of unidirectional laminates, brittle and toughened CF/epoxy, and CF/PEEK systems were used. Only a brittle CF/epoxy system was used for woven laminates. The round robin tests were conducted with two main aims: first, to examine the influence of starter films and the precracking condition on the initial mode I fracture toughness values; and second, to establish the definition of initial fracture toughness. Polyimide starter films stuck to the epoxy matrix, and caused unstable crack growth from starter films. Comparison of the tests with and without mode I precracks from starter films indicated that tests with precracks gave lower values of initial fracture toughness. The definition of initial fracture toughness values was discussed, based on the reproducibility. A 5% offset point was recommended as the initial fracture toughness from the RRT results. The influence of loading apparatus, data reduction methods, etc. was also discussed.  相似文献   

12.
Fatigue crack growth tests were conducted on compact, C(T), specimens made of 7249‐T76511 aluminium alloy. These tests were conducted to generate crack growth rate data from threshold to near fracture over a wide range of load ratios (R). Four methods were used to generate near threshold data: (1) ASTM E‐647 load reduction (LR), (2) compression pre‐cracking constant‐amplitude (CPCA), (3) compression pre‐cracking LR, and (4) constant crack mouth opening displacement LR method. A crack closure analysis was used to develop an effective stress‐intensity factor range against rate relation using a constraint factor (α = 1.85). Simulated aircraft wing spectrum tests were conducted on middle crack tension, M(T), specimens using a modified full‐scale fatigue test spectrum. The tests were used to develop the constraint‐loss regime (plane strain to plane stress; α = 1.85 to 1.15) behaviour. Comparisons were made between the spectrum tests and calculations made with the FASTRAN life prediction code; and the calculated crack growth lives were generally with ±10% of the test results.  相似文献   

13.
Polytetrafluoroethylene (PTFE) (Dupont Tradename Teflon) is a common polymer with many structural applications including sheet, gaskets, bearing pads, piston rings and diaphragms. The interest here developed because this polymer is being considered as the major component of a newly proposed `reactive' material with a possible application as a projectile to replace common inertial projectiles. Little mechanical property data is available on this material since it is commonly used only as a coating material with the dominant properties being its low friction coefficient and high application temperature. Previous work (Joyce, 2003) on commercially available sheet PTFE material has demonstrated the applicability of the normalization method of ASTM E1820 (1999), the elastic-plastic fracture toughness standard to develop fracture toughness properties of this material over a range of test temperatures and loading rates. Additional work on the aluminum filled `reactive' derivative of the basic PTFE polymer (Joyce and Joyce, 2004) has also recently been completed. In this work, standard ASTM E1820 fracture toughness specimens machined from sintered pucks of PTFE were tested at four test temperatures and at a range of test rates to determine the J Ic and J resistance curve characteristics of the PTFE material. The major results are that while crack extension is difficult at standard laboratory loading rates at ambient (21 °C) temperature or above, for temperatures slightly below ambient or for elevated loading rates, a rapid degradation of fracture resistance occurs and cracking occurs in a ductile or even nearly brittle manner.  相似文献   

14.
Fracture and fatigue tests have been performed on micro‐sized specimens for microelectromechanical systems (MEMS) or micro system technology (MST) applications. Cantilever beam type specimens with dimensions of 10 × 12 × 50 μm3, approximately 1/1000th the size of ordinary‐sized specimens, were prepared from a Ni–P amorphous thin film by focused ion beam machining. Fatigue crack growth and fracture toughness tests were carried out in air at room temperature, using a mechanical testing machine developed for micro‐sized specimens. In fracture toughness tests, fatigue pre‐cracks were introduced ahead of the notches. Fatigue crack growth resistance curves were obtained from the measurement of striation spacing on the fatigue surface, with closure effects on the fatigue crack growth also being observed for micro‐sized specimens. Once fatigue crack growth occurs, the specimens fail within one thousand cycles. This indicates that the fatigue life of micro‐sized specimens is mainly dominated by a crack initiation process, also suggesting that even a micro‐sized surface flaw may be an initiation site for fatigue cracks which will shorten the fatigue life of micro‐sized specimens. As a result of fracture toughness tests, the values of plane strain fracture toughness, KIC, were not obtained because the criteria of plane strain were not satisfied by this specimen size. As the plane strain requirements are determined by the stress intensity, K, and by the yield stress of the material, it is difficult for micro‐sized specimens to satisfy these requirements. Plane‐stress‐ and plane‐strain‐dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This indicates that fracture mechanics is still valid for such micro‐sized specimens. The results obtained in this investigation should be considered when designing actual MEMS/MST devices.  相似文献   

15.
The methods for experimental determination of strength characteristics as per applicable standards have been reviewed. For some structural steels used in NPP facilities, the influence of loading parameters and specimen geometry are allowed for during the assessment of static fracture toughness (KIc, JIc). Recommendations are given on the setting of cycling conditions for fracture toughness testing of standard specimens with and without crack-guiding lateral grooves. The authors substantiate the applicability of the Master Curve method to determination of fatigue strength of small specimens with subsequent use of the results for calculating brittle fracture resistance of reactor pressure vessel materials in the welded joint.  相似文献   

16.
One of the fundamental aims of fracture mechanics is to define fracture toughness KIC of a material. Hence, the ASTM E399 standard was developed. However according to the standard, large‐sized specimens are required to determine the fracture toughness of low alloy carbon steels. ASTM E1921 standard was developed on the fracture toughness of ferritic steels. In this study, a new method was proposed to determine the fracture toughness of ferritic steels. The purpose of the present paper is to compare the results of the method with the experimental results. Two steels that are used in gas and oil main pipelines were investigated in this study.  相似文献   

17.
18.
Clinical experience has shown that fracture of PMMA-based bone cements is a significant factor in the failure of orthopaedic joint replacements. Earlier studies of the fracture toughness properties of bone cement have been limited to relatively large test specimens — ASTM standard test methods require the use of specimens with dimensions considerably larger that those associated with bone cement in clinical use. In this study, a miniature short-rod specimen was used to measure the fracture toughness (K IC) or two bone cements (Simplex-P and Zimmer LVC). The dimension of our mini specimens approaches the cross-section of bone cements as usedin vivo. The short-rod elastic-plastic fracture toughness test method introduced by Barker was utilized to ascertain the effect of specimen preparation and ageing in distilled water on fracture toughness. Our study indicated that slow hand-mixed specimens possess comparable fracture toughness to centrifuged specimens. After ageing in water, however, centrifuged and slow hand-mixed specimens are more fracture resistant than specimens prepared by mixing the cement quickly. An optimum void content for the bone cements studied was suggested by the experimental results; for Simplex-P bone cement it appeared to be less than 1.6% whereas it was between 1.6 and 3.6% for Zimmer LVC cement. Simplex-P bone cement also showed superior fracture toughness compared to Zimmer LVC cement after storage in water for 60 days at 37° C.  相似文献   

19.
The plane strain fracture toughness, KIc, and fatigue crack growth rate material properties were developed for three heats of AISI 403 modified 12 Cr stainless steel. Valid (per ASTM requirements) fracture toughness tests were conducted in the temperature range ?200°F to 175°F. In addition, both the room temperature air environment plus 520°F, 1200psi distilled water environment fatigue crack growth rate material properties are presented. Finally, a hypothetical example problem is included which demonstrates the application of fracture mechanics technology to an AISI 403 modified 12 Cr stainless steel turbine rotor.  相似文献   

20.
Steel bridges fabricated with Q345qD steels face critical challenges when operating in cold regions with a low ambient temperature. This study aims to investigate, via an experimental program, the low‐temperature fatigue crack propagation behavior of Q345qD bridge steel base material and its butt welds. The testing program comprises a series of Charpy impact tests and fatigue crack propagation tests at the room temperature, ?20°C and ?60°C. The experimental results demonstrate a reduced crack propagation rate in the base material, but an increasing crack propagation rate in the butt welds, with a decreasing ambient temperature. The base material also shows enhanced fatigue crack propagation thresholds with the decreasing temperature. The ductile‐to‐brittle transition temperature for fatigue is lower than that for fracture in the base material while the weld metal exhibits an opposite trend. Generally, the butt welds present higher resistance against fatigue crack propagation and larger Charpy toughness values than do the base material at all tested temperatures. The Paris‐law parameters measured at the room temperature for the base material leads to a conservative assessment of the crack propagation life for a welded joint under a low ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号