首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
程林  杨文  李树森  任英  张立峰 《炼钢》2019,35(6):60-66
对"BOF→LF→RH→钙处理→CC"工艺生产X70管线钢过程的夹杂物行为演变进行了研究。发现LF精炼过程夹杂物由多面体Al_2O_3转变为球形的MgO-Al_2O_3-CaO-CaS复合夹杂。RH精炼过程夹杂物成分变化不大,但是夹杂物数量和尺寸都减小。钙处理后,夹杂物中的CaO和CaS含量增加,w(CaO)/w(Al_2O_3)增大,平均成分偏离低熔点区。在连铸过程由于二次氧化导致钢中Al_s和T.Ca含量降低,同时中间包夹杂物中CaO和CaS含量有所降低,夹杂物数密度和最大尺寸都有所增加,应加强浇铸过程的保护浇铸,以更好地保证钙处理效果。由于降温过程钢-夹杂物之间平衡的移动,夹杂物由中间包中液态的CaO-Al_2O_3转变为铸坯中的以Al_2O_3-CaS和MgO-Al_2O_3类型为主的高熔点夹杂物。  相似文献   

2.
采用扫描电镜和大样电解等检验方法对抗硫管线钢的冶炼过程试样和连铸坯中夹杂物的数量、尺寸、成分、形貌进行系统分析。结果表明:钢液经过LF精炼后,显微夹杂物的面积比降低了34.7%;中间包钢液的夹杂物面积比较VD出站增加了6.1%。LF进站钢液中的夹杂物主要为Al_2O_3夹杂物,在LF精炼和VD真空处理过程中由于钢渣间的相互作用,形成以CaO、MgO、Al_2O_3为主要组成的复合型夹杂物。钙处理后夹杂物中的CaO和Al_2O_3的物质的量比接近12∶7,并与钢液发生了脱硫反应,形成了含CaS的复合夹杂物。中间包开浇阶段铸坯中的显微夹杂物和大型夹杂物都明显高于稳定浇铸状态;在稳定浇铸状态下,铸坯中的w(T[O])小于15×10~(-6),大型夹杂物的含量小于0.2 mg/kg;大型夹杂物的主要来源是钢包引流砂、结晶器保护渣。  相似文献   

3.
分析了国内某钢厂铁水预处理→转炉→氩站→LF精炼→钙处理→连铸工艺下生产的10.9级高强度汽车用紧固件冷镦钢的洁净度水平。试验结果显示,铸坯的T[O]含量在0.0013%左右,N含量在0.0047%左右;铸坯中主要夹杂物类型为Al_2O_3-CaO-CaS复合夹杂物,同时还有少量纯Al_2O_3和Al_2O_3-MgO-CaO-CaS复合夹杂物;铸坯中大型夹杂物主要类型有SiO_2型,Al2O3型,含Na、K复杂成分型。  相似文献   

4.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

5.
采用氧氮分析仪、扫描电镜、金相显微镜等分析手段,系统研究LF精炼渣系对304系不锈钢全氧质量分数wT[O]、夹杂物数量、尺寸及成分的影响。研究结果表明,当LF精炼渣碱度由1.5升高至2.6时,LF出站溶解氧质量分数w[O]由11.6×10~(-6)降低至4.8×10~(-6),铸坯wT[O]由47×10~(-6)降低至24×10~(-6),铸坯夹杂物总数量降低,但当量直径不大于10μm的夹杂物所占比率由77.7%增加至95.1%。热力学计算结果表明:在钢液中各元素达到平衡状态时,渣系碱度越高,低熔点夹杂物2MgO·2Al_2O_3·5SiO_2生成区域越小,MgO·Al_2O_3尖晶石类夹杂物生成区域越大,与生产试验结果一致。随着LF炉渣碱度升高,铸坯夹杂物成分中MgO和Al_2O_3的质量分数分别升高了14.4%和9.1%,当碱度不大于1.9时,铸坯中不会存在镁铝尖晶石。  相似文献   

6.
《炼钢》2015,(6)
针对超低氧含量特殊钢中大型非金属夹杂物问题开展了相关工业试验和实验室研究,研究结果表明:1)当钢液w(T.O)低于(13~15)×10~(-6)后,通过LF精炼进一步降低钢液总氧和夹杂物含量变得困难。而RH真空精炼在钢液超低氧含量条件下则具有非常强的进一步降氧和去除夹杂物的能力,将RH精炼时间延长至33 min左右,钢液w(T.O)降至4.7×10-6,尺寸1.5μm以上夹杂物数量减少至1.77个/mm~2。2)超低氧特殊钢中夹杂物在钢液二次精炼过程会经历"Al_2O_3→MgO-Al_2O_3→CaO-MgOAl_2O_3→CaO-Al_2O_3"转变,其中Al_2O_3向MgO-Al_2O_3系夹杂物转变是由于钢液[Mg]与Al_2O_3夹杂物的反应,而[Mg]主要来源于[Al]还原钢包包衬MgO的反应。3)在w(T.O)=5.9×10-6的特殊钢连铸圆坯试样中检测到尺寸100~330μm的大型簇群状CaO-MgO-Al_2O_3系夹杂物,构成簇群的微小颗粒与钢液中微小夹杂物类似,表明是在连铸过程由钢液中微小夹杂物聚合而成。4)经过RH精炼,钢中夹杂物绝大多数已转变为液态CaO-Al_2O_3系夹杂物,而连铸过程发生的二次氧化,会将钢中夹杂物转变为高熔点的CaO-Al_2O_3系、MgO-Al_2O_3系或CaO-MgO-Al_2O_3系固态夹杂物,固态夹杂物更易聚合为大型夹杂物,因此在超低氧特殊钢生产中必须非常严格地控制二次氧化。  相似文献   

7.
围绕某钢铁企业生产的DP590钢中非金属夹杂物在精炼及浇铸过程中的演变行为,采用氧氮分析、显微夹杂统计及SEM-EDS能谱分析等手段进行了系统深入的研究。利用Fact-Sage软件计算并绘制了1 600℃时CaS-CaO-Al_2O_3三元相图,分析了精炼和连铸过程中夹杂物在CaS-CaO-Al_2O_3三元相图中的演变行为。研究发现,在该厂现行工艺条件下,LF喂钙处理可降低钢中的全氧含量和非金属显微夹杂含量。转炉炉后出钢至精炼出站全氧含量降低了27×10~(-6),非金属显微夹杂物含量减少了54.5%。稳态连铸坯中的氧、氮含量和显微夹杂含量较低。LF精炼喂钙线之前显微夹杂的主要成分为Al_2O_3。在LF精炼钙处理后,中间包及连铸坯中发现了大量的球形Ca O-Al_2O_3类夹杂,这表明钙处理效果良好,实现了将Al_2O_3夹杂物变性的目的。热力学计算结果表明钙处理过程中夹杂物的演变行为为Al_2O_3→Al_2O_3+CaO·6Al_2O_3+CaS→Al_2O_3+CaO·2Al_2O_3+Ca S(Ca S较多,Ca O较少)→Al_2O_3+CaO·2Al_2O_3+CaS(CaS较少,CaO较多)。  相似文献   

8.
为了研究钢液凝固和冷却过程中非金属夹杂物的生成热力学,以U75V重轨钢为研究对象,通过Aspex自动扫描电镜对不同钢液成分的中间包钢水样和连铸坯样进行分析,结合热力学计算,得到了重轨钢凝固和冷却过程中夹杂物的转变机理。研究结果表明,重轨钢中间包内主要为CaO-SiO_2-Al_2O_3-MgO型夹杂物,且夹杂物成分均匀;凝固冷却过程不仅导致夹杂物成分的变化,也会导致相的不均匀性,连铸坯中的夹杂物为CaO-SiO_2-Al_2O_3-MgO-CaS型,夹杂物中CaO含量降低,CaS含量升高,凝固冷却后的夹杂物由CaS、MgO·Al_2O_3以及CaO-SiO_2-Al_2O_3-MgO等多相组成,其中MgO·Al_2O_3相位于CaO-SiO_2-Al_2O_3-MgO相内部,最外层包裹CaS。热力学计算结果与试验结果基本吻合,夹杂物成分差异可能由于热力学和动力学条件不足引起。  相似文献   

9.
对国内某钢厂BOF-LF-RH工艺生产的轴承钢进行系统取样,发现钢中非金属夹杂尺寸主要集中在3~8μm,并且夹杂物单位面积内数量和平均粒径在RH破空样中达到最小.钢中非金属夹杂成分受渣成分影响显著,铸坯中非金属夹杂以Al_2O_3(CaO复合夹杂为主.非金属夹杂中CaO含量基本完全受渣中CaO含量影响.发现在高碱度渣的条件下,钙铝酸盐与镁铝尖晶石很容易发生反应,同时高碱度条件下MgO-Al_2O_3-CaO系夹杂物中MgO含量也会降低.  相似文献   

10.
《特殊钢》2017,(3)
试验GCr15轴承钢(/%:1.00C,0.20Si,0.39Mn,0.015P,0.005S,1.50Cr,0.003Ti,0.015Als)的冶炼工艺流程为预脱硫铁水-100 t BOF-LF-RH-200 nm×200 mm坯连铸。主要工艺特点为BOF出钢过程加1.2 kg/t铝脱氧,LF精炼采用白渣操作,精炼初渣主要成分为(/%:22Al_2O_3,56CaO,10SiO_2,5MgO),RH 67 Pa,25 min,连铸过程保护浇注。两炉钢冶炼分析结果表明,钢中氧氮含量在RH破空样品中同时达到最低分别为7×10~(-6)~8×10~(-6)和24×10~(-6)~26×10~(-6),钢中非金属夹杂尺寸主要集中在3~8μm,并且单位面积夹杂物数量在RH破空样中达到最小;铸坯中非金属夹杂以Al_2O_3-CaO夹杂为主;在高碱度渣的条件下,钙铝酸盐与镁铝尖晶石很容易发生反应,碱度为2~3时会出现少量MgO-Al_2O_3,在渣碱度达到4以上时不会出现MgO-Al_2O_3系夹杂物,并且高碱度条件下MgO-Al_2O_3-CaO系夹杂物中MgO含量会降低。  相似文献   

11.
Q345D钢中含钙类夹杂物的演变和生成机理分析   总被引:2,自引:0,他引:2  
音正元  张立峰  李超  杨文  任英 《钢铁》2020,55(11):47-56
 通过工业实践研究Q345D钢生产过程含钙类夹杂物的演变和生成机理,并结合热力学计算研究了夹杂物凝固过程的转变机理。结果表明,钢中钙主要来源于VD真空冶炼和钙处理;真空前夹杂物CaO含量很低,破空后夹杂物CaO含量开始升高;之后由于钙处理,夹杂物CaO含量进一步升高。钢液冷却凝固过程中夹杂物发生明显转变,铸坯夹杂物中CaO含量明显降低,CaS含量显著升高,其结果与FactSage热力学计算结果一致。铸坯大尺寸含钙夹杂物主要分为钙铝酸盐、CaS包裹钙铝酸盐、CaS包裹钙铝酸盐且中间析出尖晶石、CaS和Al2O3黏结型及CaS和尖晶石黏结型;统计表明,铸坯中夹杂物尺寸越大,夹杂物中CaO含量越高,大尺寸夹杂物中CaS含量极低。  相似文献   

12.
高强度低合金钢为了控制钢中硫含量,生产过程中采用高碱度、低氧化性精炼渣,致使钢中生成尺寸较大的塑性夹杂物,严重影响钢材质量。炉渣组成对钢中夹杂物有很大影响,文章介绍了采用钢-渣平衡的方法对五种渣系(不同CaO/SiO_2和Al_2O_3%)钢中总氧和非金属夹杂物影响的研究。结果表明,钢-渣反应平衡后,顶渣中Ca O/SiO_2在1.93~4.54,Al_2O_3 %在21%~30%;钢中T.O在7×10~(-6)~19×10~(-6);钢中夹杂物呈球形,绝大多数尺寸在5μm以下,类型为Al_2O_3-Si O2-CaO-MgO系,部分夹杂物中含有少量MnO。当顶渣中Al_2O_3含量一定时,随着顶渣中(CaO+MgO)/SiO_2提高,T.O下降;夹杂物中MnO含量降低,CaO/Al_2O_3增加。当顶渣CaO/SiO_2一定时,随着渣中Al_2O_3含量的提高,T.O增加;夹杂物中Al_2O_3含量增加,CaO含量也相应增加,CaO/Al_2O_3变化不大,约在1,夹杂物中MgO含量和MgO/Al_2O_3下降。随着钢中T.O含量的增加,夹杂物的数量呈上升的趋势;钢中出现大尺寸夹杂物的几率增加。  相似文献   

13.
非金属夹杂物的类型、数量、尺寸对齿轮钢的疲劳性能具有重要影响。为了明确20CrMnTiH齿轮钢在凝固和冷却过程中夹杂物的转变和析出行为,通过Aspex自动扫描电镜对齿轮钢连铸过程中非金属夹杂物的类型、数量、尺寸等进行系统分析。研究发现,中间包内钢液中氧化物夹杂的主要类型为Al_2O_3-CaO-MgO和Al_2O_3-CaO-CaS型,铸坯中氧化物夹杂的主要类型转变为Al_2O_3-MgO和Al_2O_3-CaS型。齿轮钢钢液在凝固和冷却过程氧化物夹杂中CaO向CaS转变,夹杂物的数密度降低,平均尺寸略有增加。通过热力学软件FactSage 7.1计算了中间包内钢液在凝固和冷却过程中夹杂物的形成和转变,对齿轮钢在凝固和冷却过程夹杂物的转变提供了理论依据。  相似文献   

14.
采用ASPEX夹杂物自动分析仪,从精炼终点→中包→铸坯过程中的夹杂物数量密度、尺寸和形貌变化方面,对比分析了三种不同工艺流程生产的SPHC钢。研究结果表明:1)氩站直上工艺的钢中夹杂物数量密度最大,LF和RH路线的夹杂物数量较少。2)从精炼终点→中包→铸坯,夹杂物的数量和大小都在逐渐降低,CT、LF和RH工艺路线从精炼终点到中包,夹杂物数量分别减少42.5%、46.8%和35.4%,从中包到铸坯,夹杂物数量分别减少79.3%、55.8%和79.2%。  相似文献   

15.
《特殊钢》2017,(1)
采用氧氮分析仪、扫描电镜、金相显微镜研究了160 t EAF-180 t AOD-LF-CC工艺生产304不锈钢的冶炼过程中全氧含量和夹杂物数量、尺寸、成分、类型等的衍变行为。AOD初始[C]2.0%~3.0%,[Si]0.2%~0.4%,终点[C]0.04%~0.06%,AOD终渣为(/%):53.9%CaO,30.1SiO_2,1.34Al_2O_3,5.22MgO,8.74CaF_2,0.39Cr_2O_3,0.53TFe,0.62MnO,LF终渣为(/%):57.9CaO,21.6SiO_2,1.70Al_2O_3,6.30MgO,0.03Cr_2O_3,11.9CaF_2,0.26TFe,0.31 MnO。结果表明,AOD-LF-CC过程中氧含量逐渐降低,脱氧率达到71.0%,铸坯氧含量为25×10~(-6);在精炼过程中大型夹杂物数量明显降低,铸坯中没有出现≥20μm的夹杂物;在精炼过程钢中夹杂物主要以低熔点的硅酸盐为主,从LF终点至铸坯夹杂物中MgO和Al_2O_3含量分别升高了12%和17.5%,因温度降低,铸坯中残余的Mg、Al和O不断结合析出MgO-Al_2O_3尖晶石,同时残余的Mg、Al与低熔点的硅酸盐夹杂物发生反应形成高熔点的硅酸盐,所以铸坯中夹杂物主要以镁铝尖晶石和高熔点硅酸盐为主。  相似文献   

16.
《特殊钢》2017,(1)
采用热力学计算方法得出316L不锈钢(/%:0.02C,0.51Si,1.15Mn,0.030P,0.001S,16.77Cr,10.12Ni,2.07Mo,0.040N,0.006Ti,0.004A1)精炼过程中脱氧平衡后形成MgO·Al_2O_3、2MgO·SiO_2、3Al_2O_3·2SiO_2、2NgO·2Al_2O_3·5SiO_2优势区图,研究和分析了各类夹杂物生成与转变的热力学条件。结果表明,在1 873 K时,当钢液中的溶解Al含量低于0.001%和溶解Mg含量低于2×10~(-7)%时才能形成低熔点变形能力较好的2MgO·2Al_2O_3·5SiO_2类夹杂物;当钢液中溶解Al含量在1.7×10~(-4)%以下,钢液中不形成MgO·Al_2O_3尖晶石夹杂;2MgO·SiO_2与3Al_2O_3·2SiO_2类高熔点夹杂物形成区域最大。实践表明,加Ca对高熔点夹杂物2MgO·SiO_2与3Al_2O_3·2SiO_2变性处理的热力学条件充足,当316L不锈钢180 t LF钢液溶解氧为0.002 0%,进行喂硅钙线2 m/t,精炼终点[O]为0.001 5%,2 mm冷轧板夹杂物为C类0.5~1.0级,主要成分为CaO·Al_2O_3·SiO_2。  相似文献   

17.
采用扫描电镜和热力学分析,对IF钢生产过程中Al-Ti-Mg-O类夹杂物的成分、尺寸和形貌的特征及演变行为进行了研究。结果表明,RH脱氧后夹杂物主要为纯Al_2O_3,合金化以后到浇铸成连铸坯的过程中夹杂物中Al_2O_3占比不断减小,含Ti类和含Mg类夹杂物占比不断增加;纯Al_2O_3夹杂尺寸较大,含Ti夹杂物尺寸较小。在热力学平衡条件下,钢中的夹杂物应为Al_2O_3稳定存在,但二次氧化和局部Ti浓度的升高促进了TiO_x的生成。夹杂物中TiO_x含量的增加,将会降低Al-Ti-Mg-O类夹杂物熔点。  相似文献   

18.
对涟钢LG600/LG700XL冶炼过程中夹杂物的衍变机理进行分析,分批次试验研究了精炼渣性能和钙处理工艺对钢液洁净度和钢中夹杂物的影响。结果表明,在钙处理工艺下,夹杂物的衍变路线为Al_2O_3→MgO-Al_2O_3→Al_2O_3-CaO,中间包钢液中的夹杂物主要是Al_2O_3-CaO和Al_2O_3-TiO_x复合氧化物。取消钙处理以后,铸坯中氧的质量分数从16×10~(-6)降低到11×10~(-6)。两种工艺下,材样中绝大部分夹杂物都是核心为铝酸盐、外层为TiN的复合夹杂,钙处理工艺下夹杂物核心是Al_2O_3-CaO-CaS,取消钙处理工艺下夹杂物核心是MgO-Al_2O_3尖晶石。两类复合夹杂物尺寸都比较小(10μm),对钢材性能的影响有限。取消钙处理以后,钢液可浇性基本保持不变,没有发生水口堵塞,说明取消精炼过程中的钙处理工艺对涟钢高强机械用钢而言是可行的。  相似文献   

19.
对X80管线钢中非金属夹杂物进行金相观察、大样电解和扫描电镜分析。结果表明:从LF进站到铸坯过程中显微夹杂物呈显著的下降趋势,降幅达77.77%,在LF和RH精炼过程中,夹杂物数量降低最为明显;铸坯中夹杂物主要类型为CaO-CaS-Al2O3复合夹杂,其xCaO/xAl2O3小于12 CaO·7Al2O3的xCaO/xAl2O3=1.71,夹杂物变性效果较差。X80管线钢从转炉终点到铸坯过程中,平均T.O呈下降趋势,LF进站到钙处理后,平均w(T.O)减少了2.06×10-6,RH精炼过程平均w(T.O)降低了2.27×10-6,需提高LF精炼操作水平和RH精炼操作稳定性。RH出站到铸坯是一个增氮的过程,增氮质量分数为2.27×10-6,保护浇铸水平较高;铸坯中大型夹杂物数量为1.46 mg/10 kg,夹杂物主要为球状的钙铝酸盐夹杂物、硅铝酸盐夹杂物以及与镁铝尖晶石形成的复合夹杂物。  相似文献   

20.
《特殊钢》2020,(5)
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO_2,20~30Al_2O_3,∑(FeO+MnO)≤1%。分析了RH加钙(0.001 3%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al_2O_3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号