首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The reliability of electronics under drop-shock conditions has attracted significant interest in recent years due to the widespread use of mobile electronic products. This review focuses on the drop-impact reliability of lead-free solder joints that interconnect the integrated circuit (IC) component to the printed circuit board (PCB). Major topics covered are the physics of failure in drop-impact; the use of board level and component level test methods to evaluate drop performance; micro-damage mechanisms; failure models for life prediction under drop-impact; modelling and simulation techniques; and dynamic stress–strain properties of solder joint materials. Differential bending between the PCB and the IC component is the dominant failure driver for solder joints in portable electronics subjected to drop-impact. Board level drop-shock tests correlate well with board level high speed cyclic bending tests but not with component level ball impact shear tests. Fatigue is the micro-damage mechanism responsible for the failure of solder joints in the drop-shock of PCB assemblies and the fatigue strength of solder joints depends strongly on the strain rate, test temperature, and the sequence of loading. Finally, tin-rich lead-free solders exhibit significantly higher strain rate sensitivity than eutectic SnPb solder.  相似文献   

2.
The reliability concern in flip-chip-on-board (FCOB) technology is the high thermal mismatch deformation between the silicon die and the printed circuit board that results in large solder joint stresses and strains causing fatigue failure. Accelerated thermal cycling (ATC) test is one of the reliability tests performed to evaluate the fatigue strength of the solder interconnects. Finite element analysis (FEA) was employed to simulate thermal cycling loading for solder joint reliability in electronic assemblies. This study investigates different methods of implementing thermal cycling analysis, namely using the "dwell creep" and "full creep" methods based on a phenomenological approach to modeling time independent plastic and time dependent creep deformations. There are significant differences between the "dwell creep" and "full creep" analysis results for the flip chip solder joint strain responses and the predicted fatigue life. Comparison was made with a rate dependent viscoplastic analysis approach. Investigations on thermal cycling analysis of the temperature range, (ΔT) effects on the predicted fatigue lives of solder joints are reported  相似文献   

3.
Board level solder joint reliability performance during drop test is a critical concern to semiconductor and electronic product manufacturers. A new JEDEC standard for board level drop test of handheld electronic products was just released to specify the drop test procedure and conditions. However, there is no detailed information stated on dynamic responses of printed circuit board (PCB) and solder joints which are closely related to stress and strain of solder joints that affect the solder joint reliability, nor there is any simulation technique which provides good correlation with experimental measurements of dynamic responses of PCB and the resulting solder joint reliability during the entire drop impact process. In this paper, comprehensive dynamic responses of PCB and solder joints, e.g., acceleration, strains, and resistance, are measured and analyzed with a multichannel real-time electrical monitoring system, and simulated with a novel input acceleration (Input-G) method. The solder joint failure process, i.e., crack initiation, propagation, and opening, is well understood from the behavior of dynamic resistance. It is found experimentally and numerically that the mechanical shock causes multiple PCB bending or vibration which induces the solder joint fatigue failure. It is proven that the peeling stress of the critical solder joint is the dominant failure indicator by simulation, which correlates well with the observations and assumptions by experiment. Coincidence of cyclic change among dynamic resistance of solder joints, dynamic strains of PCB, and the peeling stress of the critical solder joints indicates that the solder joint crack opens and closes when the PCB bends down and up, and the critical solder joint failure is induced by cyclic peeling stress. The failure mode and location of critical solder balls predicted by modeling correlate well with experimental observation by cross section and dye penetration tests.  相似文献   

4.
The purpose of this study is to establish a predictive fatigue life model for SAC 105 (Sn-1.0Ag-0.5Cu) and SAC 1205N (Sn-1.2Ag-0.5Cu with nickel) lead-free solder alloys. A simulation model approach was developed to investigate the stress and strain of the solder joint during drop tests. A Joint Electronic Device Engineering Council (JEDEC) Condition B drop test was simulated. This test is characterized by a 1500g peak acceleration for an impulse duration of 0.5 ms. At the point of impact during the drop test, the deformation of the printed circuit board (PCB) via bending and mechanical shocks can cause joint cracks in the solder. To establish a predictive model for the 10% fatigue life of the lead-free solder joint under drop test conditions, the study was conducted in three main phases: material analysis of the lead-free solder alloy, the drop test model, and the 10% fatigue life analysis. Tensile tests of SAC 105 and SAC 1205N were used to examine the elastic and plastic behavior of the solder alloy mechanism. Simulations and drop tests were performed to investigate the failure of the microelectronic package resulting from the drop test. The predictive fatigue life models of SAC 105 and SAC 1205N were validated by the experimental results with satisfactory accuracy.  相似文献   

5.
A design of experiments was conducted to determine the reliability of plastic ball grid array packages under various manufacturing and multiple environmental loading conditions. Parameters included conformal coating methods, underfill, solder mask defined, and non-solder mask defined pads. Board-level temperature cycling, vibration, and combined temperature cycling and vibration testing were performed to quantify the reliability and identify preferred design parameters. Through the main effects and interaction analysis, test results show underfill is the key parameter related to the solder joint reliability improvement. Conformal coat method and printed circuit board pad design are not main effects on solder joint reliability. No interactive relationship exists among these three factors under temperature cycling loading, but some interactive relationship between printed circuit board pad type and the conformal coating method exists under vibration and combined loading conditions.  相似文献   

6.
板厚影响通孔再流焊点抗热疲劳性能的试验研究   总被引:1,自引:0,他引:1  
针对不同板厚的通孔再流焊点进行了热冲击的可靠性测试,以非破坏性和破坏性的试验方式,对比分析了板厚对通孔再流焊点的抗热疲劳能力的影响。结果表明,热膨胀系数(CTE)失配是焊点产生裂纹的主要原因,使得板厚严重影响着焊点的抗热疲劳性能:厚板焊点断裂程度重于薄板焊点,其循环后的强度下降也快于后者,但二者的电性能变化差异不大。  相似文献   

7.
To evaluate various Pb-free solder systems for leaded package, thin small outline packages (TSOPs) and chip scale packages (CSPs) including leadframe CSP (LFCSP), fine pitch BGA (FBGA), and wafer level CSP (WLCSP) were characterized in terms of board level and mechanical solder joint reliability. For board level solder joint reliability test of TSOPs, daisy chain samples having pure-Sn were prepared and placed on daisy chain printed circuit board (PCB) with Pb-free solder pastes. For CSPs, the same composition of Pb-free solder balls and solder pastes were used for assembly of daisy chain PCB. The samples were subjected to temperature cycle (T/C) tests (-65/spl deg/C/spl sim/150/spl deg/C, -55/spl deg/C/spl sim/125/spl deg/C, 2 cycles/h). Solder joint lifetime was electrically monitored by resistance measurement and the metallurgical characteristics of solder joint were analyzed by microstructural observation on a cross-section sample. In addition, mechanical tests including shock test, variable frequency vibration test, and four point twisting test were carried out with daisy chain packages too. In order to compare the effect of Pb-free solders with those of Sn-Pb solder, Sn-Pb solder balls and solder paste were included. According to this paper, most Pb-free solder systems were compatible with the conventional Sn-Pb solder with respect to board level and mechanical solder joint reliability. For application of Pb-free solder to WLCSP, Cu diffusion barrier layer is required to block the excessive Cu diffusion, which induced Cu trace failure.  相似文献   

8.
Second (board) level reliability of a stacked chip scale package (SCSP) under cyclic bending is conducted to evaluate the structural integrity of solder interconnects. The test vehicle (on-board SCSP) is simply supported at both ends and subjected to repetitive deflection in the middle (three-point bend). Cyclic deformation histories such as sinusoidal, triangular, and square waveforms are examined. Tremendous joint damage is observed as square-wave loading history was applied. Approximately 80% fatigue life degradation is found by bending several thermally aged samples having Ni/Au surface finish on Cu pads of package substrates and printed circuit boards. The observed failure mode is a brittle type fracture of intermetallic compound system, which is also known as effects of solder embrittlement.Measured fatigue life is characterized by two-parameter Weibull model with cumulative damage plot for each test condition. In addition to the comparisons of characteristic fatigue life for various package configuration and cyclic bending conditions, failure analysis is also employed to identify failure sites and mechanisms such as crack initiation and continuous growth to the complete fracture of solder joints.  相似文献   

9.
The solder-joint reliability of a low-cost wafer-level chip scale package (WLCSP) on printed circuit board (PCB) under thermal fatigue is studied. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the stress intensity factors at the crack tip of different crack lengths in the corner solder joint are determined by fracture mechanics with finite element method. Furthermore, an empirical equation for predicting the thermal-fatigue life of flip chip solder joints is proposed  相似文献   

10.
The bottom-leaded plastic (BLP) package is a lead-on-chip type of chip scale package (CSP) developed mainly for memory devices. Because the BLP package is one of the smallest plastic packages available, solder joint reliability becomes a critical issue. In this study, a 28-pin BLP package is modeled to investigate the effects of molding compound and leadframe material properties, the thickness of printed circuit board (PCB), the shape of solder joint and the solder pad size on the board level solder joint reliability. A viscoplastic constitutive relation is adopted for the modeling of solder in order to account for its time and temperature dependence on thermal cycling. A three-dimensional nonlinear finite element analysis based on the above constitutive relation is conducted to model the response of a BLP assembly subjected to thermal cycling. The fatigue life of the solder joint is estimated by the modified Coffin-Manson equation. The two coefficients in the modified Coffin-Manson equation are also determined. Parametric studies are performed to investigate the dependence of solder joint fatigue life on various design factors.  相似文献   

11.
汤巍  景博  黄以锋  盛增津  胡家兴 《电子学报》2017,45(7):1613-1619
基于正交试验法研究不同温度与振动耦合条件下的板级焊点失效行为与模式,采用L9(34)混合水平正交表设计了不同温度(T)、加速度功率谱密度(PSD)与频率(V)条件下的加速寿命试验,结果表明三者对焊点可靠性影响程度为T>PSD>V,且温度是影响焊点失效模式的主要因素,随温度的升高,焊点裂纹逐渐从近封装侧的界面金属化合物(IMC)层向钎体内部扩展,焊点失效模式从脆性断裂向韧性断裂演化.基于焊点失效数据分析,发现焊点疲劳寿命对数值与PCB板背侧最大应变范围存在关联关系,并采用多项式拟合的方法建立了焊点疲劳寿命模型,拟合结果显示,该模型能较好的评估温度与振动耦合条件下的焊点寿命,预测精度较高.  相似文献   

12.
In this article, the solder joint reliability of thin and fine-pitch BGA (TFBGA) with fresh and reworked solder balls is investigated. Both package and board level reliability tests are conducted to compare the solder joint performance of test vehicle with fresh and reworked solder balls. For package level reliability test, ball shear test is performed to evaluate the joint strength of fresh and reworked solder balls. The results show that solder balls with rework process exhibit higher shear strength than the ones without any rework process. The results also exhibit that the different intermetallic compound (IMC) formation at solder joints of fresh and reworked solder balls is the key to degradation of shear strength. For board level reliability tests, temperature cycling and bending cyclic tests are both applied to investigate the fatigue life of solder joint with fresh and reworked solder balls. It is observed that package with reworked solder ball has better fatigue life than the one with fresh solder ball after temperature cyclic test. As for bending cyclic test, in addition to test on as-assembled packages, reworked and fresh samples are subjected to heat treatment at 150 °C for 100 h prior to the bending cyclic test. The purpose is to let Au–Ni–Sn IMC resettle at solder joints of fresh solder ball and examine the influence of Au–Ni–Sn IMC on the fatigue life of solder joints (Au embrittlement effect). The final results confirm that reworked solder balls have better reliability performance than fresh one since Au embrittlement dose exist at fresh solder ball.  相似文献   

13.
Increased packaging density in micro-electronic products has advantaged attach of BGA, micro-BGA, CSP, and DCA packages. These area array packages are assembled to circuit boards that are reduced in size and thickness, by necessity. These assemblies would include flexible thin laminate circuit boards with area array components attached by solder balls. In normal use, these assemblies would be subjected to numerous ultra-low frequency mechanical deflections; consider a keypad when the user enters telephone numbers. Most of the reliability studies of area array packages have dealt with temperature cycling induced fatigue. However, less attention has been paid to mechanical bending fatigue of these packages.A test method has been developed to elucidate the mechanical bending fatigue issues of BGA, micro-BGA, CSP, and DCA packages attached to printed circuit boards. Appropriate bending fatigue reliability models and their theoretical basis are being developed. The test method and preliminary mechanical cyclic fatigue data on a PBGA package will be presented as a function of printed circuit board thickness. Consideration will be given to fatigue fracture morphology and its relation to solder joint location and rate of crack growth.  相似文献   

14.
Board-level drop testing is an effective method to characterize the solder joint reliability performance of miniature handheld products. In this study, drop test of printed circuit boards (PCBs) with a four-screw support condition was conducted for a 15 mm times 15 mm fine-pitch ball grid array (FBGA) package assembly with solder ball compositions of 36Pb-62Sn-2Ag and Sn-4Ag-0.5Cu on printed circuit board (PCB) surface finishes of organic solderability preservative, electroless nickel immersion gold, and immersion tin. Finite element modeling of the FBGA assembly was performed to study the stress-strain behavior of the solder joints during drop test. The drop test results revealed a strong influence of different intermetallic compound formation on soldered assemblies drop durability. The lead-based solder supersedes the lead-free composition regardless of the types of surface finish. Joints on organic solderability preservative were found to be strongest for each solder type. Other factors affecting drop reliability such as component location on the board and thermal cycling aging effects are reported. Finite element modeling results showed that a solder joint is more prone to failure on the PCB side, and the predicted solder joint stresses are location dependent. Predicted failure sites based on simulation results are consistent with experimental observations.  相似文献   

15.
A new accelerated stress test method was developed to evaluate creep life of flip-chip solder joints with underfill. With this method, a cyclic creep test can be done simply by applying a displacement to the FR-4 printed circuit board (PCB) board in the axial direction. The creep fatigue test was performed under displacement control with real-time electrical continuity monitoring. Test results show that the displacement arising from the force is equivalent to the thermal stress during thermal expansion. It was found that the magnitude of displacement was proportional to the inelastic strain sustained by the solder joints. This indicates that the creep fatigue life obtained will not only reflect the quality of the solder joints, but can also be used to characterize the reliability of the flip-chip assembly. Finite element modeling was also performed to confirm the agreement of deformation of the solder joints under mechanical and thermal loading. Results suggest that deformation and strain of the flip-chip assembly are consistent or comparable between the mechanical and thermal cycling. The failure analysis indicates that fatigue cracks often initiate from the top edge of a corner solder joint in the creep fatigue test, which is similar to what would happen in thermal cycling test. Lastly, the effect of underfill on the creep fatigue test is discussed. It is postulated that the test method is applicable to other flip-chip assemblies, such as conductive adhesive interconnections.  相似文献   

16.
Solder joint reliability of 3-D silicon carrier module were investigated with temperature cycle and drop impact test. Mechanical simulation was carried out to investigate the solder joint stress using finite element method (FEM), whose 3-D model was generated and solder fatigue model was used. According to the simulation results, the stress involved between flip chip and Si substrate was negligible but stress is more concentrated between Si carriers to printed circuit board (PCB) solder joint area. Test vehicles were fabricated using silicon fabrication processes such as DRIE, Cu via plating, SiO deposition, metal deposition, lithography, and dry or wet etching. After flip chip die and silicon substrate fabrication, they were assembled by flip chip bonding equipment and 3-D silicon stacked modules with three silicon substrate and flip chip dies were fabricated. Daisy chains were formed between flip chip dies and silicon substrate and resistance measurement was carried out with temperature cycle test (C, 2 cycles/h). The tested flip chip test vehicles passed T/C 5000 cycles and showed robust solder joint reliability without any underfill material. Drop test was also carried out by JEDEC standard method. More details on test vehicle fabrication and reliability test results would be presented in the paper.  相似文献   

17.
Board-level solder joint reliability is very critical for handheld electronic products during drop impact. In this study, board-level drop test and finite element method (FEM) are adopted to investigate failure modes and failure mechanisms of lead-free solder joint under drop impact. In order to make all ball grid array (BGA) packages on the same test board subject to the uniform stress and strain level during drop impact, a test board in round shape is designed to conduct drop tests. During these drop tests, the round printed circuit board assembly (PCBA) is suffered from a specified half-sine acceleration pulse. The dynamic responses of the PCBA under drop impact loading are measured by strain gauges and accelerometers. Locations of the failed solder joints and failure modes are examined by the dye penetration test and cross section test. While in simulation, FEM in ABAQUS software is used to study transient dynamic responses. The peeling stress which is considered as the dominant factor affecting the solder joint reliability is used to identify location of the failed solder joints. Simulation results show very good correlation with experiment measurement in terms of acceleration response and strain histories in actual drop test. Solder joint failure mechanisms are analyzed based on observation of cross section of packages and dye and pry as well. Crack occurred at intermetallic composite (IMC) interface on the package side with some brittle features. The position of maximum peeling stress in finite element analysis (FEA) coincides with the crack position in the cross section of a failed package, which validated our FEA. The analysis approach combining experiment with simulation is helpful to understand and improve solder joint reliability.  相似文献   

18.
In this paper board-level reliability of low-temperature co-fired ceramic (LTCC) modules with thermo-mechanically enhanced ball-grid-array (BGA) solder joint structure mounted on a printed wiring board (PWB) was experimentally investigated by thermal cycling tests in the 0–100 °C and −40 to 125 °C temperature ranges. The enhanced joint structure comprised solder mask defined (SMD) AgPt pad metallization, eutectic solder and plastic-core solder balls (PCSB). Similar daisy-chained LTCC modules with non-collapsible 90Pb10Sn solder spheres were used for a reference test set. The reliability of the joint structures was analyzed by resistance measurements, X-ray microscopy, scanning acoustic microscopy (SAM) and SEM/EDS investigation. In addition, a full-wave electromagnetic analysis was performed to study effects of the plastic-core material on the RF performance of the LTCC/BGA package transition up to millimeter-wave frequencies. Thermal cycling results of the modules with PCSBs demonstrated excellent fatigue performance over that of the reference. In the harsher cycling test, Weibull’s shape factor β values of 7.9 and 4.8, and characteristic lifetime θ values of 1378 and 783 were attained for the modules with PCSBs and 90Pb10Sn solder spheres, respectively. The primary failure mode in all test assemblies was fatigue cracking in eutectic solder on the ceramic side.  相似文献   

19.
The mechanical integrity of surface-mount technology (SMT) plastic leaded chip carrier (PLCC) solder joints has been studied by a four-point mechanical flexure fatigue test. The effects of printed circuit board (PCB) pad surface composition and testing temperature on solder-joint reliability are emphasized. Three sets of PCBs have been tested, one with Cu-Ni-Sn pad surface metallurgy, one with Cu-Ni-Au, and one with SMOBC/SSC (solder mask over bare copper selective solder coating). The solder composition was the 63 wt.%Sn/37 wt.%Pb eutectic. A two-parameter Weibull distribution was used for the lifetime model for these three products. The uniformity, quality, reliability, and a comparison of these products are discussed. The joints formed on Cu-Ni-Au and SMOBC boards were appreciably more reliable than those formed on the Cu-Ni-Sn board  相似文献   

20.
Solder joint fatigue failure under vibration loading has been a great concern in microelectronic industry. High-cycle fatigue failure of lead-free solder joints has not been adequately addressed, especially under random vibration loading. This study aims to understand the lead-free solder joint behavior of BGA packages under different random vibration loadings. At first, non-contact TV Laser holography technology was adopted to conduct experimental modal analysis of the test vehicle (printed circuit board assembly) in order to understand its dynamic characteristics. Then, its first order natural frequency was used as the center frequency and narrow-band random vibration fatigue tests with different kinds of acceleration power spectral density (PSD) amplitudes were respectively carried out. Electrical continuity through each BGA package is monitored during the vibration event in order to detect the failure of package-to-board interconnects. The typical dynamic voltage histories of failed solder joints were obtained simultaneously. Thirdly, failed solder joints were cross-sectioned and metallurgical analysis was applied to investigate the failure mechanisms of BGA lead-free solder joints under random vibration loading. The results show that the failure mechanisms of BGA lead-free solder joint vary as the acceleration PSD amplitude increases. Solder joint failure locations are changed from the solder bump body of the PCB side to the solder ball neck, finally to the Ni/intermetallic compound (IMC) interface of the package side. The corresponding failure modes are also converted from ductile fracture to brittle fracture with the increase of vibration intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号