首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacity values of 1 % aqueous dispersions of barley and maize starches with different amylose content (1—35 %), were determined. It was shown that a rise in amylose content leads to an increase of heat capacity values. The heat capacity values were calculated per 1 % change of amylose content in barley and maize starches. The generalized function describing changes of heat capacity values versus amylose content for barley and maize starches has been established.  相似文献   

2.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

3.
Starches from single and double maize mutants were subjected to enzymatic degradation by porcine pancreatic α‐amylase. The maize mutants covered a broad range of macromolecular composition and crystalline structure relative to fractional crystallinity level (from 0.19 to 0.48) and polymorphic type (with various proportions of A‐, B‐ and V‐type allomorphs). Regardless of amylose content or crystallinity level, starches with a predominant B‐crystalline type were more resistant to amylolysis than others, and initial rates of hydrolysis were lower for B‐type than A‐type starches. Final hydrolysis extents were less than 35% for predominant B‐type starches, 60% for C‐type ones and more than 70% for predominant A‐ or V‐type ones. Dangling chains or crystal defects also appeared to increase initial hydrolysis rates, although lower initial rates and final hydrolysis extents were mainly related to the amount of B‐type crystallites. Unexpectedly, hydrolysis residues were composed of both amorphous and B‐type crystalline regions. These observations suggest that resistance to amylolysis is related to the distribution of B‐type crystallites within the granule rather than to the relative proportion of B‐type crystallites. © 2001 Society of Chemical Industry  相似文献   

4.
This study aimed at evaluating the influence of screw speed (250–600 rpm), barrel temperature (100–160 °C) and water content (16.4–22.5%) on rapidly digestible (RDS), slowly digestible (SDS) and resistant (RS) starch levels of waxy, normal and high‐amylose maize starches. In native starches, an increase in amylose content was correlated with lower SDS content. After extrusion, this trend was reversed. Both waxy and normal maize starches became rapidly digested. However, for normal maize starch, some SDS fraction remained. In contrast, the high‐amylose maize starch showed a significant increase in digestibility and an increase in SDS content from 20.4% in the native starch up to 27.5% after extrusion. This high level of SDS may be attributed to the presence of some remaining granular structures and formation of crystalline orders, which have slow digestion properties.  相似文献   

5.
Normal maize, waxy maize and amylomaize V starches were treated at a moisture content of 70% by ultrasonic treatment. The results showed that the surface of normal and waxy maize starches was porous after treatment and a fissure could be clearly observed in the surface of amylomaize V starch. Ultrasonic treatment did not change the X‐ray pattern of the three maize starches. The swelling power (amylomaize V (B‐type) > normal maize > waxy maize (A‐type)) and solubility (amylomaize V > normal maize > waxy maize), the syneresis of amylomaize V starch and the gelatinization transition temperatures of the three starches increased on this treatment. Ultrasonic treatment decreased the syneresis of normal and waxy maize starches, the enthalpy of gelatinization (amylomaize V > waxy maize ≈︂ normal maize) and the gelatinization temperature range (amylomaize V > normal maize ≈︂ waxy maize) of all starches. A drop in viscosity of all three starches was observed and the viscosity patterns of three starches remained unchanged after ultrasonic treatment. The data showed that ultrasonic treatment degraded preferentially the amorphous regions and more easily attacked linear amylose than highly branched amylopectin.  相似文献   

6.
Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch‐water‐glycerol mixtures was determined within a temperature range of 40‐120 °C. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0—85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.  相似文献   

7.
Starches having A‐ and B‐type X‐ray diffraction patterns (A‐ and B‐type starches) were modified by heating at 120 °C for 2 h (HT), vacuum drying at room temperature for 20 h (VD) and steeping at 50 °C for 20 h (ST). The properties of starches were compared using differential scanning calorimetry (DSC) and dynamic viscoelasticity behavior during heat processing (G' behavior). As observed by DSC, HT rarely changed the gelatinization properties for A‐type starches, but decreased the gelatinization temperatures and enthalpies (ΔH) for B‐type starches. A shift of the X‐ray diffractograms from B‐type to A‐type patterns was not detected after HT. Similar changes in gelatinization properties were observed for B‐type starches after VD. ST increased the gelatinization temperatures and also narrowed the gelatinization temperature range irrespective of crystal type. Both HT and VD decreased the peak temperature (Tp) in G' behavior and increased the peak G' value for B‐type starches. ST increased Tp and also decreased the peak G' value irrespective of starch crystal type. G' values after reaching Tp — which indicate the viscoelasticity of the swollen starch granules without breakdown — showed significant increases only for B‐type starches after HT.  相似文献   

8.
The structure and some physicochemical properties of endosperm starches from seven amylose-extender (ae) and two waxy (wx) alleles of maize (Zea mays L.) were studied. Starches prepared from mature kernels of six ae mutants, Oh43 inbred line ae (standard ae), ae-RWB-2 and ae-RWB-3, and W23 × L317 hybrid line ae-PP, ae-Bol 561 and ae-emll, were uniquely ae type, as was concluded from B type X-ray diffractograms; high gelatinization temperatures determined by differential scanning calorimetry (DSC); with poor starch-granule digestibility to amylase; high amylose (37—45 %) and high intermediate fraction (13—18 %) contents; and low ratios (1.0—1.2) of long α-1,4-chains to short α-1,4-chains of amylopectin determined by gel permeation chromatography (GPC) of isoamylase-debranched starches. The results also indicated that different ae alleles had different effects on the amylose content of endosperm starches. Mature kernels of Oh43 ae-RWB-1 mutant showed tarnished and translucent phenotype characteristics of the ae genotype but contained endosperm starch with 21—22 % of amylose which was lower than that of the Oh43 normal counterpart. Both wx-B and wx-C (standard wx) genes have similar effect on structure and physicochemical properties of waxy starches of A632, B37, C105, Oh43, and W64A inbred lines.  相似文献   

9.
The morphology and microstructure of maize starches with different amylose/amylopectin ratios (waxy: 0/100; normal maize: 23/77; Gelose 50: 50/50; Gelose 80: 80/20) were studied by microscopy with ordinary and polarized light, scanning electron microscopy (SEM) and X‐ray diffraction (XRD). Generally, the granules of the amylopectin‐rich starches were more regular in shape than those of the amylose‐rich starches, but the surfaces of the amylose‐rich starches were smoother than those of the amylopectin‐rich starches. The birefringence and particle size of the granules were waxy > normal maize > G50 > G80, which also corresponds with the trend of molecular weight. Waxy and normal maize starches showed typical A‐type patterns, while G50 and G80 show B‐type patterns. Crystallinity increases with increasing the amylopectin content.  相似文献   

10.
The goal of the research was to prepare maltodextrins (MD) from waxy wheat starch and waxy corn starch (control). Waxy wheat starches with 0.2% protein, 0.2% lipid and ∼1% amylose were isolated from two flours by mixing a dough, dispersing the dough in excess water, and separating the starch and gluten from the resultant dispersion. The mean recoveries were 72% for the starches and 76% for the gluten fraction with 80% protein. Maltodextrins having low‐dextrose equivalence (DE) 1—2 and mid‐DE 9—10 were prepared by treatment of 15% slurries of waxy wheat starch and waxy corn starch at 95 °C for 5—10 min and 20—50 min, respectively, with a heat‐stable α‐amylase. Denaturing the enzyme and spray‐drying produced MD's with bulk densities of 0.3 g/cm 3. The powdery MD's were subjected to an accelerated‐rancidity development test at 60 °C, and an off‐odor was detected after 2 days storage for the low‐DE MD's from the two waxy wheat starches (WxWS1‐MD 1.2 and WxWS2‐MD 1.5), but not for the low‐DE waxy corn maltodextrin (WxCS‐MD 2.2) or a commercial waxy corn MD with DE 1. None of the mid‐DE 9—10 MD's developed off‐odor after 30 days storage at 60 °C. The experimental products WxWS1‐MD 9.2, WxWS2‐MD 9.9 and WxCS‐MD 9.1 showed high water‐solubility and gave 1—10% aqueous solutions of high clarity with no clouding upon cooling.  相似文献   

11.
Maize starches with different amylose contents (0%, 23% and 55%) were treated in anhydrous methanol, ethanol, 2‐propanol, 1‐butanol with 0.36% HCl at 25 °C for 5 days. Results showed that the extent of change in physicochemical properties increased from methanol to butanol. Treated waxy maize starch showed higher than 65% solubility at above 75 °C. The diffraction peak at 2θ = 5.3° of amylomaize V starch disappeared after treatment in ethanol, 2‐propanol and 1‐butanol. Acid–alcohol treatment decreased the gelatinisation temperature of normal (from 64.5 to 61.9 °C) and waxy maize (from 68.1 to 61.1 °C) starches, while it increased that of amylomaize V (from 68.7 to 72.3 °C) starch. The extent of the decrease in the pasting viscosity followed the following order: amylomaize V < normal maize < waxy maize. This study indicated that acid–alcohol treatment degraded preferentially the amorphous regions and the different changes depended on the crystal structure and amylose content of starch.  相似文献   

12.
Native and defatted high amylose (about 70%) maize starch gels were freeze‐dried or repeatedly freeze‐thawed, and the effects of the treatments on the crystallinity, pasting viscosity, and resistance to digestive enzymes of the dried starch were examined. Both native and defatted starches showed a B‐type crystal structure in the X‐ray diffractogram, but the crystallinity was decreased by repeating the freeze‐thawing cycle. In the DSC thermogram, the freeze‐thawed starches exhibited two endothermic transitions in the temperature ranges of 90—110 °C and 130—160 °C, representing amyloselipid complexes and amylose‐amylose double helix crystals, respectively. By defatting, the melting enthalpy for the amylose double helices was increased, indicating that the residual lipids inhibited the amylose crystal formation. Ice crystals in the starch gel matrix became smaller and the ice cell membrane became thinner as freeze‐thawing was repeated. The freeze‐dried or freeze‐thawed starch powders swelled to a paste by heating in water as did typical granular starch, but the setback by cooling was significantly high due to the rapid retrogradation of leached amylose. By the treatments, the resistance of the starch to digestive enzymes was also raised. The defatted starches displayed greater paste viscosity and resistance to digestive enzymes than the native starches. But the overall viscosity was decreased as the number of freeze‐thawing cycles increased.  相似文献   

13.
Starches from glutinous rice (1.4% amylose), Jasmine rice (15.0% amylose) and Chiang rice (20.2% amylose) were exposed to heat‐moisture treatment (HMT) at 100 °C for 16 h and at different moisture levels (18, 21, 24 and 27%). The effect of heat‐moisture treatment on structural and thermal properties of these three rice starches was investigated. The HMT did not change the size, shape and surface characteristics of rice starch granules. The A‐type crystalline pattern of rice starches remained unchanged after HMT. The relative crystallinity (RC) and the ratio of short‐range molecular order to amorphous (RSA) of heat‐moisture treated glutinous and Jasmine rice starches decreased with increasing moisture level of the treatments. In contrast, the RC of the treated Chiang rice starch remained practically unchanged. A peak of crystalline V‐amylose‐lipid complexes was clearly presented in all treated Chiang rice starches. The peak became progressively stronger with increasing moisture level of the treatment. Differential scanning calorimetry (DSC) of all treated rice starches showed a shift of the gelatinization temperature to higher values. Increasing moisture level of the treatments increased the onset gelatinization temperature (To) but decreased the gelatinization enthalpy (ΔH) of rice starches. A broad gelatinization temperature range (TcTo) with a biphasic endotherm was found for all treated Chiang rice starches and Jasmine rice starch after HMT27 (HMT at 27% moisture level). Additionally the (TcTo) of treated Chiang rice starches increased linearly with increasing moisture level of the treatments.  相似文献   

14.
Comparative studies on acid hydrolysis of jicama and maize starch were carried out using concentrations of hydrochloric acid of 1.5%, 3.0%, and 4.5% (w/v), for 3 and 6 h, at 40°C. Native maize and jicama starches showed important morphological, thermal, and structural differences from those of tubers and cereals which potentially offer diverse industrial applications. Jicama starch showed low amylose content (12%) and small size of starch granules. Due to these characteristics, jicama starch was more susceptible to degradation during hydrolysis process than maize starch. Under the experimental conditions employed, the acid degradation was not particularly severe, as shown by scanning electronic microscopy analysis which showed small degraded zones and similar X-ray patterns in both starches. However, jicama starch was more susceptible to acid hydrolysis than maize starch, as revealed by the considerable increase in water solubility index, damaged starch, and crystallinity values. Also, the higher susceptibility of jicama starch than maize starch to the hydrolysis conditions was reflected in the sugar content release during hydrolysis. The relative crystallinity of hydrolyzed maize starches decreased during hydrolysis, while those of hydrolyzed jicama starches increased attributable to the lower amylose content of jicama starch in relation to maize starch. Maize and jicama hydrolyzed starches showed low viscosity values with relation to their native starch counterparts. However, native jicama starch showed lower viscosity values than maize starch, suggesting a lower internal stability of the starch granules during hydrolysis. Both native and hydrolyzed maize starches showed higher enthalpy, T o, T p, and T c values than jicama starch and the broadening of the endotherms decreased during the hydrolysis of both starches.  相似文献   

15.
Physicochemical properties of acorn (Quercus palustris) starch were studied. Acorn starch granules were spherical or ovoid, with diameters ranging from 3–17 μm. Acorn starch exhibited A‐type X‐ray diffraction pattern, an apparent amylose content of 43.4% and absolute amylose content of 31.4%. Relative to other A‐type starches, acorn amylopectin had a comparable weight‐average molar mass (3.9×108 g/mol), gyration radius (288 nm) and density (16.3 g mol−1nm−3). Average amylopectin branch chain‐length corresponded to DP 25.5. Onset gelatinization temperature was 65.0°C and peak gelatinization temperature was considerably higher (73.7°C). The enthalpy change of gelatinization was very high compared to non‐mutant starches (20.8 J/g). An amylose‐lipid thermal transition was not observed. Starch retrograded for 7 d at 4°C had very high peak melting temperature (54.2°C) relative to other A‐type starches. Final (260 RVU) and setback (138 RVU) viscosity of an 8% acorn starch paste was high relative to other starches and pasting temperature was 71.5°C.  相似文献   

16.
《Food Hydrocolloids》2006,20(6):923-935
Starches separated from five types of maize (two normal, one sugary and two waxy) were investigated for physicochemical, thermal, amylopectin structure and viscoelastic properties. Kisan and Paras were normal maize while Parbhat and LM-6 were waxy maize type. Apparent amylose content of normal and sugary maize was 29.5–32.6 and 41.0%, respectively. Swelling power of normal, sugary and waxy maize starches was 11.6–15.2, 7.8 and 30.2–39.2 (g/g), respectively. X-ray diffraction of maize starches indicated typical A-pattern. Maize starch showed a single broad peak at 2θ=23.2° and a dual peak 2θ=17°–18.1, respectively. Waxy maize starches showed the presence of greater crystallinity than other starches while sugary maize starch showed the presence of lower crystallinity and a large amount of amylose–lipid complex. Intrinsic viscosity [η] of starches in 90% DMSO at 25 °C was 79.7–119.5 ml g−1 for normal, 70.5 ml g−1 for sugary and 107.2–118.1 ml g−1 for waxy starches. Branch chain–length distribution of amylopectin revealed that the apparent amylose, long side chain- and short side chain-amylopectin proportion ranged between 0.0–41%, 13.4–31.5% and 41.5–66.8%, respectively, among the various maize starches. Maize sugary showed the highest apparent amylose content and the least amount of short- and long-side chains of amylopectin. LM-6 and Parbhat showed higher proportion of both long- and short-chain amylopectin as compared to other starches. Distribution of α-1, 4-chains of amylopectin (short-/long-chain) ranged between 2.1 and 3.4, the least for LM-6 and the highest for Paras starch. The transition temperatures (ToTc) ranged between 60.5 and 76.1 °C for sugary, 63.5–76.3 °C for normal and 64.4–81.3 °C for waxy maize starch. The enthalpy of gelatinization (ΔHgel) of sugary, normal and waxy maize starches was 2.47, 3.7–4.75 and 4.15–5.4 J/g, respectively. Normal and sugary maize starches showed higher G′ and G″ than waxy type starches. The change in the moduli during cooling and reheating of pastes cooked at different temperatures revealed low disintegration of granular structure in starch with higher amylose and amylose–lipid complex as well as low crystallinity. The changes in moduli during 10 h at 10 °C revealed highest retrogradation in maize sugary followed by Paras and Kisan starch.  相似文献   

17.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

18.
Structures and functional properties of starch from high‐protein, lipoxygenase‐free and low‐linolenic acid soybean variety seeds collected 20 d prior to harvest were investigated. Soybean starches exhibit CB‐type X‐ray diffraction patterns, and granule diameters were very small (0.7 to 4 µm). Soybeans, 20 d prior to harvest contained 10.9–11.7% starch (dry basis). Apparent amylose content was 19–22% and absolute amylose content was 11.8–16.2%. Amylopectin weight‐average molar mass ranged from 5.1 to 11.3×108 g/mol. Amylopectin average branch chain‐length, determined by anion‐exchange chromatography with an amyloglucosidase post‐column and pulsed amperometric detector, was very short relative to other starches (20.4–20.9). Onset gelatinization temperature ranged from 52–54°C, and ΔH was 12–13 J/g. Paste viscosity was low relative to other starches, especially peak (81–93 RVU) and final (93–106 RVU) viscosity. The apparent amylose content of the low‐linolenic acid soybean starch was significantly higher than that of high‐protein soybean starch, and absolute amylose content of low‐linolenic acid soybean starch was significantly higher than that of lipoxygenase‐free soybean starch. Based on our results, investigations on whether soybeans with different fatty acid oil composition have different starch structures would be worthwhile. Field replicates for each soybean variety exhibited high variation in starch characteristics, with further differences in starch structures and functional properties likely to be determined once variation is minimized.  相似文献   

19.
Corn starches with and without guar gum [10% (w/w)] and 2% (w/w) of diacetyl tartaric acid ester of monoglyceride, sodium stearoyl‐2‐lactylate or citric acid, respectively, were extrusion‐cooked in a twin‐screw extruder at 18% moisture, 150 °C and 180 rpm screw speed. The content of resistant starch was determined by sequential enzymatic digestion. The formation of resistant starch in extruded corn starch was strongly affected by the addition of gum and the different food additives. X‐ray diffraction of the extruded starches gave a V diffraction pattern indicating the effect of extrusion cooking and amylose‐lipid complexes. Enzymatic digestion did not affect the V‐structure, which could apparently be attributed to extrusion cooking. Similarly, differential scanning calorimetric thermograms indicated that all isolated resistant starches exhibited endothermic transitions between 71—178 °C signifying a complex formation between amylose and the emulsifiers and possibly the melting of amylose crystallites in the resistant starch. Purification of the isolated resistant starches by size exclusion‐high performance liquid chromatography showed a dependence of molecular weight on the added additives. Results of differential scanning calorimetry and X‐ray diffraction suggest that amylose‐lipid complexes could also be involved in the formation of resistant starch in extruded cornstarch.  相似文献   

20.
The aim of this work was to determine the thermal, functional and rheological properties of maize (Zea mays) starch isolated from seven varieties. Chemical analysis was undertaken in all starch samples. The gelatinization and retrogradation temperature at different storage times, as well as the enthalpy of the isolated starches, were determined using differential scanning calorimetry (DSC). Swelling and solubility were also measured in individual samples. Dynamic oscillatory tests (amplitude and frequency sweeps) were undertaken on starch samples with 10% (w/v) of total solids during a cycle of three stages (kinetics) of heating/cooling, using a strain‐controlled rheometer. The samples presented an amylose content which ranged from 22% to 29%, typical in normal starches, the lipid values were under 1%, while the protein contents were just over 1%. The calorimetric profile for the studied starches showed a peak temperature (gelatinization) over the temperature range from 72.5 to 75.7 °C and enthalpy values between 13.68 and 17.58 J g?1. Four starches presented enthalpy values of the retrogradation transition that increased with the storage time, showing differences among the starches analysed. Maximum swelling and solubility were usually found at the second stage of the above‐mentioned cycle. The rheological profile showed that the gels formed during the first stage of the above‐mentioned kinetics presented the behaviour of weak viscoelastic gels with the storage or elastic modulus (G′) higher than the loss or viscous modulus (G″) over the applied strain and frequency ranges. All samples showed a more elastic character as the kinetics progressed. Starches isolated from diverse maize varieties showed differences in their characteristics studied, and might produce different functional properties in the products where they are used. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号