首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
目前铂(Pt)及其合金仍是氢燃料电池首选催化剂,但是Pt高价格、低储量及循环稳定性差等缺点严重阻碍了氢燃料电池商业化,因此发展低成本、高性能的新型非Pt催化剂和低Pt催化剂是实现氢燃料电池商业化的关键。本文围绕燃料电池催化开发及使用过程中存在的成本、稳定性和毒化问题,回顾了近年来阴离子交换膜燃料电池和质子交换膜燃料电池催化剂分别在提高阳极催化剂活性、降低阴极催化剂成本领域的最新研究进展,包括催化剂的组成、结构以及颗粒尺寸等对催化活性、稳定性的影响。最后针对燃料电池催化剂存在的问题,指出未来应基于原位观测和表征技术加强对碱性氢氧化机理的研究,同时开发高温制备小尺寸高有序度的有序铂合金阴极催化剂的方法是未来的研究重点。  相似文献   

2.
质子交换膜燃料电池非铂电催化剂研究进展   总被引:3,自引:2,他引:3       下载免费PDF全文
聂瑶  丁炜  魏子栋 《化工学报》2015,66(9):3305-3318
质子交换膜燃料电池(PEMFCs)目前主要催化剂为贵金属Pt基催化剂。然而,Pt价格高、储量低等问题严重阻碍了PEMFCs的商业化进程。发展低成本、高性能的氧还原催化剂是解决铂资源短缺、降低燃料电池成本、实现燃料电池商业化的关键。结合本课题组的研究工作,综述了最近几年非铂催化剂在燃料电池阴极氧还原方面的研究进展,着重探讨了新型氮掺杂碳基纳米材料的设计与制备,并概述了非铂催化剂面临的困难以及未来发展方向。  相似文献   

3.
随着人口快速增加,开发可持续能源已经成为当今世界的首要任务之一。氢气被认为是一种无污染、可再生的新能源,可以代替化石能源。氢气可以由电解水的电催化析氢半反应获得。传统的电催化析氢催化剂主要由贵金属构成,而贵金属稀少,价格昂贵,不适合大规模工业制氢。探索高效的非贵金属电催化析氢反应催化剂十分必要。基于过渡金属开发的电催化析氢反应催化剂引起广泛关注,综述基于过渡金属电催化析氢反应催化剂的研究进展,概述电解水原理,讨论基于过渡金属化物的电催化析氢反应催化剂材料的制备方法,包括硫化物、硒化物、碳化物、氮化物、磷化物及其复合物。探讨增强催化剂电催化析氢活性的方法及基于非贵金属电催剂材料面临的挑战和前景展望。  相似文献   

4.
郑学文  赵蕊  吴家哲  王朦胧  陈玉彬 《化工进展》2022,41(11):5800-5810
电解海水是一种可再生、可持续、低成本且节约淡水资源的氢气生产方案。因此,针对天然海水或盐水电解质的析氢反应(HER)和析氧反应(OER),设计开发高效、稳定的电催化剂具有良好的应用前景。为了深入了解海水电解所面临的现状和挑战,本文对电催化分解海水催化剂的设计思路与改性方法进行了系统的回顾和总结。首先详细讨论了电解海水中析氢反应、析氧反应、析氯反应的基本原理。随后对最近报道的在海水中能够稳定运行的HER和OER电催化剂进行了汇总和分析。针对阴极催化剂,分别概述了高效贵金属基电催化剂和低成本过渡金属基电催化剂。针对阳极催化剂,主要讨论了取得较大进展的镍基催化剂,随后对镍基之外的其他电催化剂进行对比补充。文章最后对电解海水催化剂目前所面临的挑战和发展方向进行了总结和展望,基于现有分析认为,在未来的研究中需要进一步探索新型电解海水催化剂的种类和结构,开发更高效稳定的阴极和具有更高OER选择性的阳极电催化剂,以满足分解海水电催化剂工业化应用的要求。  相似文献   

5.
Mono and multi-noble metal particles on Al2O3 were prepared in one step by flame spray pyrolysis (FSP) of the corresponding noble metal precursors dissolved in methanol and acetic acid (v/v 1:1) or xylene. The noble metal loading of the catalysts was close to the theoretical composition as determined by WD-XRF and LA-ICP-MS. The preparation method was combined with high-throughput testing using an experimental setup consisting of eight parallel fixed-bed reactors. Samples containing 0.1–5 wt% noble metals (Ru, Rh, Pt, Pd) on Al2O3 were tested in the catalytic partial oxidation of methane. The ignition of the reaction towards carbon monoxide and hydrogen depended on the loading and the noble metal constituents. The selectivity of these noble metal catalysts towards CO and H2 was similar under the conditions used (methane: oxygen ratio 2:1, temperature from 300 to 500 °C) and exceeded significantly those of gold and silver containing catalysts.Selected catalysts were further analysed using XPS, BET, STEM-EDXS and XANES/EXAFS. The catalysts exhibited generally a specific surface area of more than 100 m2/g, and were made up of ca. 10 nm alumina particles on which the smaller noble metal particles (1–2 nm, partially oxidized state) were discernible. XPS investigation revealed an enrichment of noble metals on the alumina surface of all samples. The question of alloy formation was addressed by STEM-EDXS and EXAFS analysis. In some cases, particularly for Pt–Pd and Pt–Rh, alloying close to the bulk alloys was found, in contrast to Pt–Ru being only partially alloyed. In situ X-ray absorption spectroscopy on selected samples was used to gain insight into the oxidation state during ignition and extinction of the catalytic partial oxidation of methane to hydrogen and carbon monoxide.  相似文献   

6.
Dye-sensitized solar cells (DSSCs) based on disulfide/thiolate (T2/T) redox couples have attracted remarkable attention due to their high efficiency and low cost. As an indispensible part of DSSCs, counter electrode (CE) design plays a crucial role in high efficiency DSSCs. This mini-review paper selectively reviews the recent advances in T-mediated DSSCs using novel CE (namely cathode) materials, mainly including noble metal platinum (Pt), carbon materials, transition metal compounds (TMCs), polymers, and hybrids, thus highlighting the merits and demerits of alternative Pt catalysts, and the prospects and challenges of Pt-free CEs for the development of high-performance and low-cost DSSCs.  相似文献   

7.
《Ceramics International》2020,46(9):13125-13132
It is of great significance to develop highly active and cost-effective electrocatalysts for the oxygen evolution reaction and hydrogen evolution reaction in alkaline solution. Herein, we report an interface engineering strategy to fabricate 3D hierarchical CuCo2O4@CuCo2S4 heterostructure catalysts with efficient synergistic effects for water splitting. Owing to the special nano-architectures with abundant active interfaces, the as-prepared CuCo2O4@CuCo2S4 catalysts exhibit superior electrochemical activity and prominent electrochemical stability, with a small overpotential of 240 and 101 mV for oxygen and hydrogen evolution reactions to deliver a current density of 10 mA cm−2, respectively. Remarkably, the CuCo2O4@CuCo2S4 materials directly applied as both anode and cathode electrode demonstrate excellent water splitting performance, achieving 10 mA cm−2 at a low cell voltage of only 1.53 V, outperforming the integrated state-of-the-art RuO2||Pt/C couple (1.56 V). Moreover, density functional theory calculations suggest that the excellent overall water splitting property of CuCo2O4@CuCo2S4 is attributed to a large amount of hierarchical hetero-interfaces, giving rise to effective adsorption and cleavage of H2O molecules on the catalyst surface. This work represents a general strategy to exploit efficient and stable hybrid electrocatalysts for renewable energy applications by rational catalyst interface engineering.  相似文献   

8.
The steam reforming reaction of hydrocarbons and organic fuels, in general, is followed by a two-stage reaction of water gas shift, which allows increasing the hydrogen yield and a final purification step for CO removal to use hydrogen in an ammonia plant or a PEM fuel cell. This paper is focused on the CO Preferential Oxidation, CO PROX (or CO selective oxidation in excess hydrogen) reaction, considered as the simplest and cost effective process to achieve the less than 10 ppm CO. The objective of this paper is to review the performances of noble metals (Pt, Ru, Rh, Pd), gold and transition metal oxides catalysts in this reaction. Although the results reported are largely influenced by the experimental conditions (reactant flow composition, mass of catalyst, duration of experiment …) a comparison of advantages and drawbacks for each type of catalysts is proposed in terms of activity and selectivity as well as of CO2 and H2O influences. A special attention will be paid to copper-doped ceria catalysts which appear to be very active and selective in a range of temperatures appropriate for fuel cell application. The performances, the stability and the low cost of these formulations compared to noble metal-based catalysts make them very attractive for an industrial application.  相似文献   

9.
Efforts to improve water electrolysis technology are being made using three promising approaches: (a) development of solid polymer electrolyte (SPE) water electrolysers, (b) increasing the operating temperature of alkaline water electrolysers from 80° C to a temperature in the range 120–150° C, and (c) investigation of advanced concepts. The research and development efforts on SPE water electrolysers are aimed at (a) low cost current collectors, (b) high-activity electrocatalysts, (c) high temperature capability, (d) low cost SPE, and (e) design and construction of scaled-up cell stacks. Attempts are being made to find materials for cells and auxiliaries which are stable in an alkaline environment at elevated temperatures. Advanced concepts for electrolytic hydrogen production, including (a) finding better reversible electrocatalysts, (b) use of anode depolarizers, (c) water vapour electrolysis in molten or solid electrolytes, (d) development of hydroxyl ion transporting membranes, (e) investigation of thermochemical-electrochemical hybrid cycles, and (f) photoelectrolysis of water, are still at a preliminary research stage.Work performed under the auspices of the US Department of Energy.  相似文献   

10.
郭博文  罗聃  周红军 《化工进展》2021,40(6):2933-2951
氢能是一种清洁、高效的二次能源,是构建未来清洁社会的重要支撑。在众多制氢技术中,利用可再生能源产生电能,并通过电解水制备高纯度氢气是最具潜力的制氢路线之一。本文在介绍三种电解水制氢技术及核心部件的基础上,重点讨论了电解水析氢催化剂,特别是过渡金属基电催化剂及单原子催化剂的研究进展。本文最后对可再生能源发电与电解水制氢技术的耦合进行了分析与讨论,简述了现阶段国内外基于可再生能源发电制氢项目的开发进展。文章指出,随着电力成本下降,高效、稳定、经济的析氢催化剂的开发,可再生能源发电制氢将成为解决能源消纳、加速氢能产业化进程、最终实现我国向低碳清洁能源转型的重要途径。  相似文献   

11.
H. Zhao  L. Pan  J. Jin  L. Li  J. Xu 《Fuel Cells》2012,12(5):876-882
Low oxygen reduction reaction (ORR) activity and high cost of noble metal catalysts are two major challenges in direct methanol fuel cells (DMFCs). Pt‐based catalysts are considered as an ideal alternative to deal with these two problems. While the second component metals play only the role of synergy effect with Pt, they themselves are inert towards activity towards ORR. It is necessary to design a new route to ultilize the second component metal by forming CoNx ORR active site on the base of PtM catalyst. In this paper, PtCo/polypyrrole‐multiwalled carbon nanotubes (PtCo/PPy‐MWCNTs) catalyst containing two types of ORR active site (Pt and CoNx) was synthesized by one pot synthesis route. The effect and dynamic mechanism of the named CoNx active site towards ORR was discussed by X‐ray photoelectron sprectroscopy and linear sweep voltammetry. PtCo/PPy‐MWCNTs cathode catalyst showed improved activity towards ORR and great potential in DMFCs.  相似文献   

12.
Two series of LaMnO3 supported noble metal (Pt, Pd, Rh) catalysts prepared by the citrate method and calcined in air at 600 and 800 °C, respectively, were investigated. The catalysts resulting from method A were prepared by simultaneous incorporation of the noble metals during perovskite preparation and those following method B were generated by impregnation of the calcined perovskites with the noble metal compounds. The noble metals form solid solutions with the perovskite lattice. Reduction of the catalysts with hydrogen prior to the catalytic reaction led to a significant enhancement of the catalytic activity. During the catalytic reaction, the noble metal clusters are partially transformed to highly dispersed noble metal oxides or nonstoichiometric noble metal oxide phases, which are the catalytically active phases for the total oxidation of methane. The best results were obtained with the Pd containing catalysts prepared by method B.  相似文献   

13.
A direct methanol fuel cell using a mixture of O2 and CO2 at the cathode was evaluated using anion exchange materials and cathode catalysts of Pt and a non‐Pt catalyst. The MEA based on non‐noble metal catalyst Acta 4020 showed superior performance than Pt/C based MEA in terms of open circuit potential and power density in carbonate environment. The fuel cell performance was improved by applying anion exchange ionomer in the catalyst layer. A maximum power density of 4.5 mW cm–2 was achieved at 50 °C using 6.0 M methanol and 2.0 M K2CO3.  相似文献   

14.
Kinetic parametes were determined for the oxygen evolution reaction on 50–50 atom percent alloys of RuIr, RuPt, and IrPt and compared with results obtained using ruthenium, iridium, platinum, and RuO2/TiO2 electrodes. The potentiostatic studies were made on oxide covered electrodes at 80°C in both 1.0 M H2SO4 and 1.0 M CF3SO3H. Cyclic voltammetric studies showed that while these noble metals and alloys are about equally effective as electrocatalysts for the hydrogen evolution reaction, striking differences in activity are found for the oxygen evolution reaction. The order of electrocatalytic activity towards oxygen evolution in H2SO4 is Ru > RuIr alloy ~ RuO2/TiO2 ~ Ir > IrPt alloy > RuPt alloy > Pt. The type of acid used had very little effect on the kinetic parameters. The lower electrocatalytic activities when platinum is present is probably due to the formation of a platinum oxide film. The dual barrier model is used to interpret the results for the electrodes containing platinum. The best electrocatalysts for oxygen evolution in acid solutions consist of noble metals which form oxide films (RuO2, IrO2) possessing metallic characteristics.  相似文献   

15.
We describe a new class of electrocatalysts for the O2 reduction, and H2 and methanol oxidation reactions, consisting of a monolayer of Pt deposited on a metal or alloy carbon-supported nanoparticles. These electrocatalysts show up to a 20-fold increase in Pt mass activity compared with conventional all-Pt electrocatalysts. The origin of their increased activity was identified through a combination of experimental methods, employing electrochemical and surface science techniques, X-ray absorption spectroscopy, and density functional theory calculations. The long-term tests in fuel cells demonstrated excellent stability of the anode and good stability of the cathode electrocatalysts. We also describe the stabilization of Pt electrocatalysts against dissolution under potential cycling regimes effected by a submonolayer of Au clusters deposited on Pt surfaces. These new electrocatalysts promise to alleviate some of the major problems of existing fuel cell technology.  相似文献   

16.
BACKGROUND: Microbial electrolysis cell (MEC) has been considered as a promising new technology for the production of bio‐hydrogen from renewable biomass, but low‐cost alternatives to typical cathode material (platinum) are needed. In this study, CNTs‐based electrode alternatives to Pt were examined in a single‐chamber membrane‐free MEC. To the best of our knowledge, the use of carbon nanotube as the MEC cathode catalyst has not been reported so far. RESULTS: For all cathodes, hydrogen production rates increased in response to increase in voltage and the highest hydrogen production was achieved at 0.9 V. At an applied voltage of 0.9 V, MECs with Pt/MWNT cathodes obtained a hydrogen production rate of 1.42 m3 m?3 day?1 with a current density of 192 A m?3, a coulombic efficiency of 94%, a cathodic hydrogen recovery of 65%, and electrical energy efficiency based on electricity input of 126%. CONCLUSIONS: The Pt/MWNT cathode developed demonstrated better electrocatalytic activity than the MWNT cathode and achieved performance comparable with the Pt cathode in terms of hydrogen production rate. These results demonstrate the great potential of using carbon cloth with CNTs‐based electrodes as a cathode material for MECs. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
A series of noble metal (Pt, Ru or Pd) promoted Co/Al2O3 catalysts were prepared by sequential impregnation method. The catalysts were characterized by XRD, TPR, H2-TPD and TPSR techniques, and their catalytic performance in Fischer–Tropsch synthesis was investigated in a fixed-bed reactor. The results of activity measurements show that the addition of small amounts of noble metal greatly improved the activity of the Co/Al2O3 catalyst. TPR experimental results demonstrate that hydrogen spillover from the noble metal to cobalt oxide clusters facilitated the reduction of cobalt oxide and, thus significantly increased the reducibility of Co/Al2O3 catalyst. The presence of noble metal increased the amount of chemisorbed hydrogen and weakened the bond strength of Co–H. TPSR results indicate that CO was adsorbed in a more reactive state on the promoted catalysts.  相似文献   

18.
Using platinum (Pt) black and carbon-supported Pt (Pt/C) as cathode catalysts, membrane-electrode assemblies (MEAs) were fabricated with various Nafion ionomer content, and their direct formic acid fuel cell (DFAFC) performances were investigated. In MEAs incorporating Pt black catalysts, the current density at 0.6 V was highest at ionomer/catalyst volume ratio of 1.0, which was consistent with the electrochemical active area (EAS) variation measured by cyclic voltammetry. However, the current density measured at 0.3 V, the cell performance increased with Nafion ionomer content, especially at low ionomer loading, indicating that proton transport rate played an important role. The variation in ionic resistance (Rion) of cathode layers with Nafion ionomer content was experimentally confirmed by using the complex capacitance analysis of impedance data implemented with nitrogen (cathodes)/hydrogen (anodes) atmosphere. For Pt/C, the layer thickness and EAS of cathode were larger than those of MEA cathode using Pt black; and the current densities at 0.6 V were lower than those of Pt black, suggesting that smaller fraction of EAS was utilized.  相似文献   

19.
碱性电解水具有操作易实现、设备费用低和寿命长的特点,是目前应用最广泛的将可再生资源转化为氢能的技术。但电解水存在能耗高的问题,因此需要高效催化剂提高能量转化效率。钌具有与铂相近的金属-氢键强度,是极具前景的制氢催化剂。综述了近年来钌基催化剂的制备及其碱性电解水制氢反应的最新研究进展。与廉价过渡金属材料相比,钌基催化剂具有优异的电化学活性和稳定性,是一种很有前景的析氢材料。以目前主要研究的钌金属及其合金、钌基磷化物、钌基硫化物、钌基硒化物为代表,分别进行了简要的介绍和评价,最后提出了钌基电催化剂在制氢应用中存在的问题和未来的发展方向。  相似文献   

20.
The membrane electrode assembly (MEA) is the key component of a PEMFC stack. Conventional MEAs are composed of catalyzed electrodes loaded with 0.1–0.4 mgPt cm−2 pressed against a Nafion® membrane, leading to cell performance close to 0.8 W cm−2 at 0.6 V. Due to their limited stability at high temperatures, the cost of platinum catalysts and that of proton exchange membranes, the recycling problems and material availability, the MEA components do not match the requirements for large scale development of PEMCFs at a low cost, particularly for automotive applications.Novel approaches to medium and high temperature membranes are described in this work, and a composite polybenzimidazole–poly(vinylphosphonic) acid membrane, stable up to 190 °C, led to a power density of 0.5 W cm−2 at 160 °C under 3 bar abs with hydrogen and air. Concerning the preparation of efficient electrocatalysts supported on a Vulcan XC72 carbon powder, the Bönnemann colloidal method and above all plasma sputtering allowed preparing bimetallic platinum-based electrocatalysts with a low Pt loading. In the case of plasma deposition of Pt nanoclusters, Pt loadings as low as 10 μg cm−2 were achieved, leading to a very high mass power density of ca. . Finally characterization of the MEA electrical properties by Electrochemical Impedance Spectroscopy (EIS) based on a theoretical model of mass and charge transport inside the active and gas diffusion layers, together with the optimization of the operating parameters (cell temperature, humidity, flow rate and pressure) allowed obtaining electrical performance greater than 1.2 W cm−2 using an homemade MEA with a rather low Pt loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号