首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

2.
Viscoelastic properties were examined for semidilute solutions of poly(methyl methacrylate) (PMMA) and polystyrene (PS) in chlorinated biphenyl. The number of entanglement per molecule, N, was evaluated from the plateau modulus, G N . Two time constants, s and 1, respectively, characterizing the glass-to-rubber transition and terminal flow regions, were evaluated from the complex modulus and the relaxation modulus. A time constant k supposedly characterizing the shrink of an extended chain, was evaluated from the relaxation modulus at finite strains. The ratios 1/ s and k / s were determined solely by N for each polymer species. The ratio 1/ s was proportional to N 4.5 and N 3.5 for PMMA and PS solutions, respectively. The ratio k / s was approximately proportional to N 2.0 in accord with the prediction of the tube model theory, for either of the polymers. However, the values for PMMA were about four times as large as those for PS. The result is contrary to the expectation from the tube model theory that the viscoelasticity of a polymeric system, with given molecular weight and concentration, is determined if two material constants s and G N are known.  相似文献   

3.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

4.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

5.
The thermal decomposition of nitric oxide (diluted in Argon) has been measured behind incident shock waves by means of IR diode laser absorption spectroscopy. In two independent runs the diode laser was tuned to the=0 =12 3/2 R(18.5)-rotational vibrational transition and the=1 =22 3/2 R(20.5)-rotational vibrational transition of nitric oxide, respectively. These two transitions originating from the vibrational ground state (=0) and the first excited vibrational state (=1) were selected in order to probe the homogeneity along the absorption path. The measured NO decomposition could satisfactorily be described by a chemical reaction mechanism after taking into account boundary layer corrections according to the theory of Mirels. The study forms a further proof of Mirels' theory including his prediction of the laminar-turbulent transition. It also shows, that the inhomogeneities from the boundary layer do not affect the IR linear absorption markedly.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

6.
We study and obtain formulas for the asymptotic behavior as ¦x¦ of C 2 solutions of the semilinear equation u=f(x, u), x (*) where is the complement of some ball in n and f is continuous and nonlinear in u. If, for large x, f is nearly radially symmetric in x, we give conditions under which each positive solution of (*) is asymptotic, as ¦x¦, to some radially symmetric function. Our results can also be useful when f is only bounded above or below by a function which is radially symmetric in x or when the solution oscillates in sign. Examples when f has power-like growth or exponential growth in the variables x and u usefully illustrate our results.  相似文献   

7.
Summary The effect of an internal heat source on the heat transfer characteristics for turbulent liquid metal flow between parallel plates is studied analytically. The analysis is carried out for the conditions of uniform internal heat generation, uniform wall heat flux, and fully established temperature and velocity profiles. Consideration is given both to the uniform or slug flow approximation and the power law approximation for the turbulent velocity profile. Allowance is made for turbulent eddying within the liquid metal through the use of an idealized eddy diffusivity function. It is found that the Nusselt number is unaffected by the heat source strength when the velocity profile is assumed to be uniform over the channel cross section. In the case of a 1/7-power velocity expression, the Nusselt numbers are lower than those in the absence of internal heat generation, and decrease with diminishing eddy conduction. Nusselt numbers, in the absence of an internal heat source, are compared with existing calculations, and indications are that the present results are adequate for preliminary design purposes.Nomenclature A hydrodynamic parameter - a half height of channel - a 1 a constant, 1+0.01 Pr Re 0.9 - a 2 a constant, 0.01 Pr Re 0.9 - C p specific heat at constant pressure - D h hydraulic diameter of channel, 4a - h heat transfer coefficient, q w/(t wt b) - I 1 integral defined by (17) - I 2 integral defined by (18) - k diffusivity parameter, (1+0.01 Pr Re 0.9)1/2 - m exponent in power velocity expression - Nu Nusselt number, hD h/ - Nu 0 Nusselt number in absence of internal heat generation - Pr Prandtl number, / - Q heat generation rate per volume - q w wall heat flux - Re Reynolds number for channel, 2/ - s ratio of heat generation rate to wall heat flux, Qa/q w - T dimensionless temperature, (t wt)/(t wt b) - t fluid temperature, t w wall temperature, t b fluid bulk temperature - u fluid velocity in x direction, , fluid mean velocity - x longitudinal coordinate measured from channel entrance - x + dimensionless longitudinal coordinate, 2(x/a)/Pr Re - y transverse coordinate measured from channel centerline - z transverse coordinate measured from channel wall, ay - molecular diffusivity of heat, /C p - dummy variable of integration - dummy variable of integration - H eddy diffusivity of heat - M eddy diffusivity of momentum - dummy variable of integration - fluid thermal conductivity - T dimensionless diffusivity, Pr ( H/) - fluid kinematic viscosity - dummy variable of integration - fluid density - dummy variable of integration - ratio of eddy diffusivity for heat transfer to that for momentum transfer, H/ M - average value of - dimensionless velocity distribution, u/  相似文献   

8.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

9.
The results of an analytical approximation method to predict the film vaporization are compared with the predictions of a finite difference method of Hermitian type. The analytically estimated rate of vaporization of different hydrocarbons, which is the most important value for practical applications, deviates only a few percents from the numerically estimated value.
Zur Berechnung der Filmverdunstung von Kohlenwasserstoffen in einem Heißluftstrom
Zusammenfassung Es wird ein Näherungsverfahren zur Berechnung der Filmverdunstung dargestellt, bei dem eine vollständige Lösung der miteinander gekoppelten Grenzschichtgleichungen entfallt. Die nach dieser analytischen Methode ermittelte Verdunstung verschiedener Kohlenwasserstoffe wird mit Werten verglichen, die nach einem Differenzenverfahren vom Hermiteschen Typ berechnet wurden. Es zeigt sich, daß die analytisch berechnete Verdunstungsrate, die für praktische Anwendungen wichtigste Größe, nur wenige Prozent von dem numerisch ermittelten Wert abweicht.

Formelzeichen c ew Konzentrationsdifferenz c1e -c 1w - c i Massenkonzentration der Komponentei - cp, cpi spezifische Wärmekapazität bei konstantem Druck des Gemisches — der Komponentei - D 12 binärer Diffusionskoeffizient - f dimensionslose Stromfunktion - f dimensionslose Geschwindigkeit - g () allgemeine Funktion - m 1 Massenstromdichte der Komponente 1 - m * dimensionslose Massenstromdichte, G1. (4.8) - M, Mi Molgewicht, — der Komponentei - P, P i Druck, Partialdruck der Komponentei - Pr Prandtlzahl,C p/ - q Wärmestromdichte - r 1 Verdampfungswärme - R allgemeine Gaskonstante - Sc Schmidtzahl/D 12 - T absolute Temperatur - u Geschwindigkeitskomponente inx-Richtung - v Geschwindigkeitskomponente iny-Richtung - x Längskoordinate - y Querkoordinate - z dimensionslose Konzentration - dimensionslose Funktion/ e e - transformierte Koordinatey - dimensionslose Temperatur (T-T w)/(Te-Tw) - Wärmeleitfähigkeit des Gemisches - Zähigkeit des Gemisches - transformierte Koordinate - Dichte des Gemisches - Stromfunktion Indizes e am Außenrand der Grenzschicht - i Stoffi - w an der Filmoberfläche - 1, 2 Komponente 1, 2 - () Ableitung ()/ n   相似文献   

10.
Zusammenfassung Es werden Messungen von Wärmeübergang und Druckverlust an einem Glattrohr und zwei unterschiedlichen Beulrohren beschrieben.Ein spezielles Verfahren zur Versuchsauswertung ermöglicht die Berechnung der Wärmeübergangskoeffizienten sowohl im Rohr als auch im Ringspalt ohne Messung der Rohrwandtemperaturen.Für die Wärmeübergangskoeffizienten und Druckverluste im Rohr werden Näherungsgleichungen angegeben.
Heat transfer and pressure drop in smooth and buckled tubes
Measurements of heat transfer and pressure drop in a smooth and two different buckled tubes are described.A special evaluation method permits the determination of heat transfer coefficients as well in the tube as in the annulus without measuring tube wall temperatures.Approximation equations are presented for in tube heat transfer coefficients and pressure drop.

Formelzeichen

Symbol Einheit Bedeutung A m2 Fläche - B Konstante - cp kj/kj K isobare spezifische Wärmekapazität - C Konstante - d m Durchmesser - D m Innendurchmesser des Mantelrohres - E Konstante - k W/m 2 K Wärmedurchgangskoeffizient - K Korrekturfaktor, Gl. (42) - l m Länge - m kg/s Massenstrom - n Konstante, Exponent - N Anzahl der Messungen - p bar Druck - q Konstante, Exponent - Q W Wärmestrom - V m3/s Volumenstrom - w m/s Geschwindigkeit - W K/W Wärmewiderstand - W/m2 K Wärmeübergangskoeffizient - m Wanddicke - endliche Differenz von . - Widerstandsbeiwert - kg/ms dynamische Viskosität - °C Temperatur - W/mK Wärmeleitfähigkeit - v m2s kinematische Viskosität - kg/m3 Dichte - Funktion Indizes a außen - B1 Beulrohr 1 - B2 Beulrohr 2 - fm bei der mittleren Fluidtemperatur - i innen - Lm logarithmischer Mittelwert bei Wand- und mittlerer Fluidtemperatur - m Mittel - m mit der Bezugslänge - m/ gebildet - w bei Wandtemperatur - 0 für Glattrohr - 1 Warmwasserseite - 2 Kaltwasserseite - am Eintritt - am Austritt - * unkorrigierte Werte Dimensionslose Kennzahlen FZ Formkennzahl - Nu Nusselt-ZahlNu= · d/gl - Pr Prandtl-ZahlPr= cp/ - Re Reynolds-ZahlRe=w · d /v - SK Strömungskennzahl Gl. (12)  相似文献   

11.
Zusammenfassung Es werden Geschwindigkeitsverteilungen und Filmdickenabnahmen von nichtisothermen NEWTONschen und nicht-NEWTONschen (Potenzansatz) Rieselfilmen mit temperaturanhÄngiger ViskositÄt berechnet, wobei die Temperaturverteilung im Film als linear vorausgesetzt wird. An dicken Rieselfilmen mit Re=10–4... 10–2 sind Geschwindigkeitsprofile, Filmdicken und OberflÄchentemperaturen gemessen und daraus die thermische EinlauflÄnge bestimmt worden. Ausgehend von der Penetrationstheorie für eine endlich dicke Platte kann man für diese EinlauflÄnge eine Approximationsformel erhalten, die für Strömungen mit Re < 1000 verwendet werden kann.
Non-isothermal filmflow of a highly viscous liquid, the viscosity strongly depending on temperature
Velocity distributions and film thicknesses of nonisothermal NEWTONIAN and non-NEWTONIAN (power-law) falling films are computed assuming that the temperature across the film varies linearly. Experimental studies on thick falling films of Re=10–4...10–2 had been carried out to measure velocities, film thickness and surface temperature and to calculate the thermal entrance length. One can get for this entrance length a approximation formula which is valid for flows with RePr <1000 by applying the results for the thermal penetration into a material finite plate.

Bezeichnungen B dimensionsloser Temperaturkoeffizient - ¯B [K] Temperaturkoeffizient (ln)/(1/T) - cp [J/kgK] spezif. WÄrme bei konst. Druck - Fo FOURIER-Zahl - g [m/s2] Erdbeschleunigung - H dimensionslose Filmdicke - h [m] Filmdicke - m [Pas2–n] ViskositÄtskoeffizient im Potenzansatz von OSTWALD-DE WAELE - Nu NUSSELT-Zahl - n Flüssigkeitsexponent im Potenzansatz von OSTWALD-DE WAELE - Pr PRANDTL-Zahl (Gl.3.5) - q [W/m2] WÄrmestromdichte - Re REYNOLDS-Zahl (Gl.3.4) - T [K] Temperatur - t [s] Zeit - U dimensionslose Geschwindigkeit (X-Komponente) - u [m/s] Geschwindigkeitskomponente in x-Richtung - X dimensionslose Koordinate (X=x/h0) - x [m] LÄnge, Koordinate - Y dimensionslose Koordinate (Y=y/h0) - y [m] Höhe, Koordinate - [W/m2K] WÄrmeübergangskoeffizient - Plattenneigungswinkel gegen Horizontale - [s–1] Schergeschwindigkeit - dimensionslose Temperatur (Gl.3.3) - [m2/s] TemperaturleitfÄhigkeit (Gl.3.3) - [W/mK] WÄrmeleitfÄhigkeit - [Pas] ViskositÄt - [kg/m3] spezif. Dichte - [Pa] Schubspannung Indizes a scheinbar (apparent) - 0 bei x=0, auch: isotherm - P auf die Penetrationszeit bezogen - s an der OberflÄche - T bei linearer Temperaturdifferenz T - w an der Wand - 99 auf =0,99 bezogen - gemittelt, Mittelwert - thermisch ausgebildet, bei x - proportional - ¯t ungefÄhr - kleiner oder gleich ungefÄhr  相似文献   

12.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

13.
Summary The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.Nomenclature stream function - 2h channel width - x, y distances measured parallel and perpendicular to the channel walls respectively - U velocity of fluid at x=0 - V constant velocity of fluid at the wall - =y/h nondimensional distance perpendicular to the channel walls - f() function defined in equation (1) - coefficient of kinematic viscosity - R=Vh/ suction Reynolds number - density of fluid - C p specific heat at constant pressure - K thermal conductivity - T temperature - x=x 0 position where temperature of walls changes - T 0, T 1 temperature of walls for x<x 0, x>x 0 respectively - = (TT 1)/T 0T 1) nondimensional temperature - =x/h nondimensional distance along channel - R * = Uh/v channel Reynolds number - Pr = C p/K Prandtl number - n eigenvalues - B n() eigenfunctions - B n (0) , () eigenfunctions for R=0 - B 0 (i) , B 0 (ii) ... change in eigenfunctions when R0 and small - K n constants given by equation (13) - h heat transfer coefficient - Nu Nusselt number - m mean temperature - C n constants given by equation (18) - perturbation parameter - B 0i () perturbation approximations to B 0() - Q = B 0/ 0 derivative of eigenfunction with respect to eigenvalue - z nondimensional distance perpendicular to the channel walls - F(z) function defined by (54)  相似文献   

14.
The inertia of a liquid flowing through a porous medium is normally ignored, but if the acceleration is great, it may be important. The relaxation time, defined so that it alone accounts for the inertia, has been determined experimentally with a simple oscillator. A U-Tube is provided with a porous plug and filled with a liquid. During pendulation of the liquid, the frequency and the damping define the relaxation time. The measured value of the relaxation time is about 10 times the theoretical estimate derived from Navier-Stokes equation.Symbols E modulus of elasticity - E D dissipated energy - E k kinetic energy - g acceleration of gravity - G pressure gradient - h height - K 0 permeability - L length of porous plug - n porosity - P dissipated power - pressure - R half the tube length - R c radius of the tube bend - r radial coordinate - r o radius of the tube - s coordinate along a streamline in the tube - t time - v flux per unit area - it relaxation time - , auxiliary variables - , v dynamic and kinematic viscosity - , velocity potential for inviscid flow and gravity potential - dissipation function - displacement of the liquid - , o frequency of damped and undamped oscillations  相似文献   

15.
In marine geophysical seismological prospecting extensive use is made of towed receiving systems consisting of extended flexible cylinders containing acoustic sensors over which the water flows in the longitudinal direction. The boundary layer pressure fluctuations on the cylinder surface are picked up by the sensors as hydrodynamic noise. This paper is concerned with the study of the energy and spacetime characteristics of the pressure fluctuations in the turbulent boundary layer on an extended flexible cylinder in a longitudinal flow. The pressure fluctuations on the cylinder surface have been investigated experimentally for ReX=(2–4)·107, a dimensionless diameter of the pressure fluctuation sensors d p + =dpu*/=500, where dp is the sensor diameter, u* the dynamic viscosity, and the viscosity coefficient, and frequencies 0.02311.259 (=*/U). The spectral and correlation characteristics of the pressure fluctuations on the surface of the flexible cylinder are found to differ from the corresponding characteristics for a rigid cylinder [1–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i aza, No, 5, pp. 49–54, September–October, 1989.  相似文献   

16.
In this paper the slip phenomenon is considered as a stochastic process where the polymer segments (taken as Hookean springs) break off the wall due to the excessive tension imposed by the bulk fluid motion. The convection equation arising in network theories is solved for the special case of a polymer/wall interface to determine the time evolution of the configuration distribution function (Q, t). The stress tensor and the slip velocity are calculated by averaging the proper relations over a large number of polymer segments. Due to the fact that the model is probabilistic and time dependent, dynamic slip velocity calculations become possible for the first time and therefore some new insight is gained on the slip phenomenon. Finally, the model predictions are found to match macroscopic experimental data satisfactorily.Nomenclature rate of creation of polymer segments - g(Q) constant of rate of creation of polymer segments - rate of loss of polymer segments - h(Q) constant of rate of loss of polymer segments - h(Q) constant of rate of loss of polymer segments due to destruction of its B-link - H Hookean spring constant - k Boltzmann's constant - n unit vector normal to the polymer/wall interface - n 0 number density of polymer segments - n 0 surface number density of polymer segments - Q vector defining the size and orientation of a polymer segment - Q * critical length of a segment beyond which the tension may overcome the W adh - t time - t h howering time of broken polymer segments - T absolute temperature - W adh work of adhesion Greek Letters n nominal strain - strain - n nominal shear rate - shear rate - dimensionless constant in the expressions of h(Q), g(Q) - viscosity - T velocity gradient tensor - 0 time constant - standard deviation of vectors Q at equilibrium - w wall shear stress - stress tensor - 0 equilibrium configuration distribution function of Q - configuration distribution function of Q  相似文献   

17.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

18.
The unsteady laminar boundary layer flow is investigated for a semi-infinite flat plate subjected to impulsive motion. An approximate solution is obtained by utilizing Meksyn's method. These results vary smoothly from Rayleigh's unsteady solution to the steady state solution of Blasius. Results are compared to those of Lam and Crocco.Nomenclature A expansion coefficient, see eq. (13) - a expansion coefficient, see eq. (10) - B expansion coefficient, see eq. (14) - b expansion coefficient, see eq. (12) - G function defined by eq. (6) - U free stream velocity - u velocity in x direction - v velocity in y direction - x coordinate along plate - y coordinate normal to plate Greek symbols (l, ) incomplete gamma function - function defined by eq. (15) - y(U/x) 1/2 - kinematic viscosity - x/Ut - (Uvx)1/2 f(, )  相似文献   

19.
Zusammenfassung Das instationÄre Temperaturfeld oberhalb einer waagerechten, mit konstanter Wärmestromdichte beheizten Platte in verschiedenen Flüssigkeiten wurde experimentell untersucht. —Die Versuche haben ergeben, da\ sich das Einsetzen der InstabilitÄt (Konvektionsbeginn) durch eine Kenngrö\eK=gq 0 kr 2 /c p beschreiben lÄ\t. Hierin istg die lokale Fallbeschleunigung, der isobare thermische Ausdehnungskoeffizient, die dynamische ViskositÄt,c p die isobare spezifische WärmekapazitÄt,q 0 die Wärmestromdichte und kr die kritische Zeit, das ist der Zeitabschnitt zwischen dem Einschalten der Heizung und dem ersten Einsetzen der Konvektion.
The onset of convection in a horizontal fluid layer heated from below
The unsteady temperature field on the upper side of a horizontal plate heated with constant heat flux is experimentally studied in different fluids. The beginning of the instability (onset of convection) can be described by a dimensionless number given asK=gq 0 kr 2 /c p whereg is the local gravitational acceleration, the expansion coefficient at constant pressure,q 0 the heat flux, kr the critical time, namely the time interval between the starting of heating and the onset of convection.
  相似文献   

20.
Summary The paper presents the phenomenon of thioxotropy from the point of view of the theory of fluids with fading memory. In the first part of the paper the mechanism of thixotropy was discussed in order to justify the application of the concept of structural parameter (this parameter occurs in the previously presented rheological model of thixotropic materials). In the second part of the paper an equation was derived, which enables the prediction of the mean value of the friction factor during the flow of a thixotropic fluid in a pipe. According to the obtained equation the friction factor is a function of three dimensionless numbers: the generalized Reynolds number, a modified Deborah number and a new dimensionless number which may be called a structural number. The preliminary experimental results confirmed the applicability of the obtained equation.
Zusammenfassung Die Veröffentlichung behandelt das Phänomen der Thixotropie vom Standpunkt der Theorie der Flüssigkeiten mit schwindendem Gedächtnis. Im ersten Teil wird der Mechanismus der Thixotropie untersucht und die Einführung eines sog. Strukturparameters begründet (dieser Parameter kommt bereits in dem früher behandelten rheologischen Modell eines thixotropen Körpers vor). Im zweiten Teil wird dann eine Formel abgeleitet, welche die Voraussage des mittleren Wertes des Widerstandskoeffizienten bei der Strömung einer thixotropen Flüssigkeit durch ein Rohr ermöglicht. Dieser Formel gemäß ist der Widerstandskoeffizient eine Funktion von drei dimensionslosen Zahlen: einer verallgemeinerten Reynolds-Zahl, einer modifizierten Deborah-Zahl und einer neuen dimensionslosen Zahl, die als Struktur-Kennzahl bezeichnet werden kann. Die vorläufigen Versuchsergebnisse bestätigen die Brauchbarkeit der abgeleiteten Formel.

a rheological parameter in eq. [1], s–1 - A rheological parameter in eq. [1]; function defined in eq. [15] - b rheological parameter in eq. [1] - B constant in eq. [15] - c rheological parameter in eq. [4] - c function defined in eq. [4] - C function defined in eq. [48] (see also eq. [43]) - D pipe diameter,m - K 1,K2 coefficients of proportionality in eq. [6] - k rheological parameter in eq. [12], Nsn/m2 - k * rheological parameter in eq. [1], Nsm/m2 - L pipe length, m - m rheological parameter in eq. [1] - n rheological parameter in eq. [12] - N number of particles in unit volume - p pressure, Pa - p 0 pressure at the pipe entrance, Pa - r radial coordinate, m - R pipe radius, m - s rheological parameter in eq. [1] - t time, s - u z axial local velocity in the pipe, m/s - v mean linear velocity in the pipe, m/s - z axial coordinate, m - rheological parameter in eq. [5], = 1 s - shear rate, s–1 - nominal shear rate defined by eq. [39], s–1 - structural parameter - substantial derivative of structural parameter, s–1 - e equilibrium structural parameter in eqs. [2] and [5] - en nominal structural parameter - 0 initial value of structural parameter - function of natural time - mean value of natural time, s - shear stress, Pa - 0 shear stress field atZ = 0 (at pipe entrance) - y0 equilibrium yield stress, Pa - shear stress field atz - fluid density, kg/m3 - v number of bonds in an average aggregate - mean value of the friction factor - De modified Deborah number defined by eq. [46] - Re generalized Reynolds number defined by eq. [45] - Se structural number defined by eq. [41a] With 4 figures and 1 table  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号