首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper treats a finite time horizon optimal control problem in which the controlled state dynamics are governed by a general system of stochastic functional differential equations with a bounded memory. An infinite dimensional Hamilton–Jacobi–Bellman (HJB) equation is derived using a Bellman-type dynamic programming principle. It is shown that the value function is the unique viscosity solution of the HJB equation.  相似文献   

2.
In this paper, we develop a new method to approximate the solution to the Hamilton–Jacobi–Bellman (HJB) equation which arises in optimal control when the plant is modeled by nonlinear dynamics. The approximation is comprised of two steps. First, successive approximation is used to reduce the HJB equation to a sequence of linear partial differential equations. These equations are then approximated via the Galerkin spectral method. The resulting algorithm has several important advantages over previously reported methods. Namely, the resulting control is in feedback form and its associated region of attraction is well defined. In addition, all computations are performed off-line and the control can be made arbitrarily close to optimal. Accordingly, this paper presents a new tool for designing nonlinear control systems that adhere to a prescribed integral performance criterion.  相似文献   

3.
We consider the general continuous time finite-dimensional deterministic system under a finite horizon cost functional. Our aim is to calculate approximate solutions to the optimal feedback control. First we apply the dynamic programming principle to obtain the evolutive Hamilton–Jacobi–Bellman (HJB) equation satisfied by the value function of the optimal control problem. We then propose two schemes to solve the equation numerically. One is in terms of the time difference approximation and the other the time-space approximation. For each scheme, we prove that (a) the algorithm is convergent, that is, the solution of the discrete scheme converges to the viscosity solution of the HJB equation, and (b) the optimal control of the discrete system determined by the corresponding dynamic programming is a minimizing sequence of the optimal feedback control of the continuous counterpart. An example is presented for the time-space algorithm; the results illustrate that the scheme is effective.  相似文献   

4.
1.IntroductionPartialdifferentialequationssubjecttounilateralboundaryconditionsareusuallycalledSignoriniproblemsintheliterature.TheseproblemshavebeenstudiedbymanyauthodssincetheappearenceofthehistoricalpaperbyA.Signoriniin1933[25].Signoriniproblemsaroseinmanyareasofapplicationse.g.,theelasticitywithunilateralconditions[lo],thefluidmechnicsproblemsinmediawithsemipermeableboundaries[8,12],theelectropaintprocess[1]etc.Fortheexistence,uniquenessandregularityresultsforSignorinitypeproblemswerefer…  相似文献   

5.
We address finding the semi-global solutions to optimal feedback control and the Hamilton–Jacobi–Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin’s maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 6-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with three examples of rigid body attitude control using momentum wheels.  相似文献   

6.
A Tikhonov finite-dimensional approximation is applied to a Fredholm integral equation of the first kind. This allows using a variational regularization method with a regularization parameter from the residual principle and reducing the problem to a system of linear algebraic equations. The accuracy of the approximate solution is estimated with allowance for the error of the finitedimensional approximation of the problem. The use of this approach is illustrated by solving an inverse boundary value problem for the heat conduction equation.  相似文献   

7.
通过作用量变分原理,给出了Hamilton正则方程离散积分的传递辛矩阵表示,利用Hamilton正则方程给出了其对应的Lie代数.说明了当时间区段长度趋近于0时,离散系统积分的传递辛矩阵群收敛于连续时间Hamilton系统微分方程分析积分得到的辛Lie群.  相似文献   

8.
In this contribution, a new finite element method in the temporal domain is presented, in which the time step size is introduced as an additional variable. Thus, the variation of the time integral of the Lagrangean resulting from Hamilton's principle has to be carried out with respect to the rules of the generalized variational calculus. Apart from the usual time integral of the Euler‐Lagrange differential equations, the so‐called transversality condition is obtained as an additional result representing a time‐boundary term, which is used to obtain an optimal step size in the time domain.  相似文献   

9.
An approach to minimize the control costs and ensuring a stable deviation control is the Riccati controller and we want to use it to control constrained dynamical systems (differential algebraic equations of Index 3). To describe their discrete dynamics, a constrained variational integrators [1] is used. Using a discrete version of the Lagrange-d’Alembert principle yields a forced constrained discrete Euler-Lagrange equation in a position-momentum form that depends on the current and future time steps [2]. The desired optimal trajectory (qopt, popt) and according control input uopt is determined solving the discrete mechanics and optimal control (DMOC) algorithm [3] based on the variational integrator. Then, during time stepping of the perturbed system, the discrete Riccati equation yields the optimal deviation control input uR. Adding uopt and uR to the discrete Euler-Lagrange equation causes a structure preserving trajectory as both DMOC and Riccati equations are based on the same variational integrator. Furthermore, coordinate transformations are implemented (minimal, redundant and nullspace) enabling the choice of different coordinates in the feedback loop and in the optimal control problem. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
M. Wagner  L. Gaul 《PAMM》2002,1(1):12-13a
The so‐called hybrid stress boundary element method (HSBEM) is introduced in a frequency domain formulation for the computation of acoustic radiation and scattering in closed and in finite domains. Different from other boundary element formulations, the HSBEM is based on an extended Hellinger‐Reissner variational principle and leads to a Hermitian, frequency‐dependent stiffness equation. Due to this, the method is very well suited for treating fluid structure interaction problems since the effort for the coupling the structure, discretized by a finite elements, and the fluid, discretized by the HSBEM is strongly reduced. To arrive at a boundary integral formulation, the field variables are separated into boundary variables, which are approximated by piecewise polynomial functions, and domain variables, which are approximated by a superposition of singular fundamental solutions weighed by source strength. This approximation cancels the domain integral over the equation of motion in the hybrid principle and leads to a boundary integral formulation, incorporating singular integrals. Comparing to previous results published by the authors, new considerations concerning the interpretation of singular contributions in the stiffness matrix for exterior domain problems are communicated here.  相似文献   

11.
Critical point theorems for indefinite functionals   总被引:11,自引:0,他引:11  
A variational principle of a minimax nature is developed and used to prove the existence of critical points for certain variational problems which are indefinite. The proofs are carried out directly in an infinite dimensional Hilbert space. Special cases of these problems previously had been tractable only by an elaborate finite dimensional approximation procedure. The main applications given here are to Hamiltonian systems of ordinary differential equations where the existence of time periodic solutions is established for several classes of Hamiltonians.Supported in part by the U.S. Army under Contract No. DAAG-29-75-C-0024 and by the Conseglio Nazionale delle Ricerche-Gruppo Nazionale Analisi Funzionale e ApplicazioneSupported in part by the J.S. Guggenheim Memorial Foundation, and by the Office of Naval Research under Contract No. N00014-76-C-0300. Reproduction in whole or in part is permitted for any purpose of the U.S. Government  相似文献   

12.
We use the formalism of bilinear- and quadratic differential forms in order to study Hamiltonian and variational linear distributed systems. It was shown in [1] that a system described by ordinary linear constant-coefficient differential equations is Hamiltonian if and only if it is variational. In this paper we extend this result to systems described by linear, constant-coefficient partial differential equations. It is shown that any variational system is Hamiltonian, and that any scalar Hamiltonian system is contained (in general, properly) in a particular variational system.  相似文献   

13.
14.
本文推广了 Liouville关于方程可积性的定义 ,定义二阶多项式系统 ( * )的可积性为首次积分可由P( x,y) ,Q( x,y)通过有限次代数运算 ,积分 ,微分 ,指数运算和解代数方程得到 .证明了与二阶多项式系统相对应的一阶算子具有由定理给出的某种“特征”是该系统可积的充分条件 .最后 ,利用此结果给出了Burgers-K-d V方程的行波解的首次积分 .  相似文献   

15.
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland’s variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.  相似文献   

16.
The optimal control of transverse vibration of two Euler–Bernoulli beams coupled in parallel by discrete springs is considered. An index of performance is formulated which consists of a modified energy functional of two coupled structures at a specified time and penalty functions involving the point control forces. The minimization of the performance index over these forces is subject to the equation of motion governing the structural vibrations, the imposed initial condition as well as the boundary conditions. By use of the modal space technique, the optimal control of distributed parameter systems is simplified into the optimal control of a linear time-invariant lumped-parameter systems. A computationally attractive method based on Legendre wavelets in time domain for solving the optimal control of the lumped parameter systems for any finite interval is proposed. Legendre wavelet integral operational matrix and the properties of a Kronecker product are used to find the approximated optimal trajectory and optimal law of the linear systems with respect to a quadratic cost function by only solving a linear system of algebraic equations. This method provides a straightforward and convenient approach for digital computation. A numerical example is provided to demonstrate the applicability and effectiveness of the proposed method.  相似文献   

17.
In this paper, we represent a new numerical method for solving the steady-state Stokes equations in an unbounded plane domain. The technique consists in coupling the boundary integral and the finite element methods. An artificial smooth boundary is introduced separating an interior inhomogeneous region from an exterior one. The solution in the exterior domain is represented by an integral equation over the artificial boundary. This integral equation is incorporated into a velocitypressure formulation for the interior region, and a finite element method is used to approximate the resulting variational problem. This is studied by means of an abstract framework, well adapted to the model problem, in which convergence results and optimal error estimates are derived. Computer results will be discussed in a forthcoming paper.  相似文献   

18.
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.  相似文献   

19.
弹性平面扇形域问题及哈密顿体系*   总被引:12,自引:4,他引:8  
钟万勰 《应用数学和力学》1994,15(12):1057-1066
通过变量代换及变分原理,将平面弹性扇形域的方程导向哈密顿体系,从而可用分离变量法、本征函数展开等方法求解扇形域的分析单元,这样便可以与有限元的程序系统相结合。显示了哈密顿体系、辛数学的应用潜力。  相似文献   

20.
We present an approach to compute optimal control functions in dynamic models based on one-dimensional partial differential algebraic equations (PDAE). By using the method of lines, the PDAE is transformed into a large system of usually stiff ordinary differential algebraic equations and integrated by standard methods. The resulting nonlinear programming problem is solved by the sequential quadratic programming code NLPQL. Optimal control functions are approximated by piecewise constant, piecewise linear or bang-bang functions. Three different types of cost functions can be formulated. The underlying model structure is quite flexible. We allow break points for model changes, disjoint integration areas with respect to spatial variable, arbitrary boundary and transition conditions, coupled ordinary and algebraic differential equations, algebraic equations in time and space variables, and dynamic constraints for control and state variables. The PDAE is discretized by difference formulae, polynomial approximations with arbitrary degrees, and by special update formulae in case of hyperbolic equations. Two application problems are outlined in detail. We present a model for optimal control of transdermal diffusion of drugs, where the diffusion speed is controlled by an electric field, and a model for the optimal control of the input feed of an acetylene reactor given in form of a distributed parameter system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号