首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A graph is distance-hereditary if the distance stays the same between any of two vertices in every connected induced subgraph containing both. Two well-known classes of graphs, trees and cographs, both belong to distance-hereditary graphs. In this paper, we first show that the perfect domination problem can be solved in sequential linear-time on distance-hereditary graphs. By sketching some regular property of the problem, we also show that it can be easily parallelized on distance-hereditary graphs.  相似文献   

2.
A clique of a graph G is defined as a complete subgraph maximal under inclusion and having at least two vertices. A clique-transversal set D of G is a subset of vertices of G such that D meets all cliques of G. The clique-transversal set problem is to find a minimum clique-transversal set of G. In this paper we present a polynomial time algorithm for the clique-transversal set problem on claw-free graphs with degree at most 4.  相似文献   

3.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

4.
A circular-arc model ℳ is a circle C together with a collection A\mathcal{A} of arcs of C. If A\mathcal{A} satisfies the Helly Property then ℳ is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature. Linear-time recognition algorithms have been described both for the general class and for some of its subclasses. However, for Helly circular-arc graphs, the best recognition algorithm is that by Gavril, whose complexity is O(n 3). In this article, we describe different characterizations for Helly circular-arc graphs, including a characterization by forbidden induced subgraphs for the class. The characterizations lead to a linear-time recognition algorithm for recognizing graphs of this class. The algorithm also produces certificates for a negative answer, by exhibiting a forbidden subgraph of it, within this same bound.  相似文献   

5.
In a graph G a matching is a set of edges in which no two edges have a common endpoint. An induced matching is a matching in which no two edges are linked by an edge of G. The maximum induced matching (abbreviated MIM) problem is to find the maximum size of an induced matching for a given graph G. This problem is known to be NP-hard even on bipartite graphs or on planar graphs. We present a polynomial time algorithm which given a graph G either finds a maximum induced matching in G, or claims that the size of a maximum induced matching in G is strictly less than the size of a maximum matching in G. We show that the MIM problem is NP-hard on line-graphs, claw-free graphs, chair-free graphs, Hamiltonian graphs and r-regular graphs for r \geq 5. On the other hand, we present polynomial time algorithms for the MIM problem on (P 5,D m )-free graphs, on (bull, chair)-free graphs and on line-graphs of Hamiltonian graphs.  相似文献   

6.
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an algorithm to obtain an outerplanar subgraph of a graph with disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain linear-time exact and approximation algorithms on graphs with fixed disk dimension. In particular, a linear-time approximation algorithm is presented for the pathwidth problem.  相似文献   

7.
In a graph G=(V,E), a subset FV(G) is a feedback vertex set of G if the subgraph induced by V(G)?F is acyclic. In this paper, we propose an algorithm for finding a small feedback vertex set of a star graph. Indeed, our algorithm can derive an upper bound to the size of the feedback vertex set for star graphs. Also by applying the properties of regular graphs, a lower bound can easily be achieved for star graphs.  相似文献   

8.
Let G=(V,E) be a simple graph without isolated vertices. A vertex set SV is a paired-dominating set if every vertex in VS has at least one neighbor in S and the induced subgraph G[S] has a perfect matching. In this paper, we present a linear-time algorithm to find a minimum paired-dominating set in strongly chordal graphs if the strong (elimination) ordering of the graph is given in advance.  相似文献   

9.
We define a perfect coloring of a graph G as a proper coloring of G such that every connected induced subgraph H of G uses exactly ω(H) many colors where ω(H) is the clique number of H. A graph is perfectly colorable if it admits a perfect coloring. We show that the class of perfectly colorable graphs is exactly the class of perfect paw-free graphs. It follows that perfectly colorable graphs can be recognized and colored in linear time.  相似文献   

10.
《国际计算机数学杂志》2012,89(9):1897-1910
In this paper we obtain information about the hyperbolicity constant of cubic graphs. They are a very interesting class of graphs with many applications; furthermore, they are also very important in the study of Gromov hyperbolicity, since for any graph G with bounded maximum degree there exists a cubic graph G* such that G is hyperbolic if and only if G* is hyperbolic. We find some characterizations for the cubic graphs which have small hyperbolicity constants, i.e. the graphs which are like trees (in the Gromov sense). Besides, we obtain bounds for the hyperbolicity constant of the complement graph of a cubic graph; our main result of this kind says that for any finite cubic graph G which is not isomorphic either to K4 or to K3, 3, the inequalities 5k/4≤δ (?)≤3k/2 hold, if k is the length of every edge in G.  相似文献   

11.
We show that the Dominating Set problem parameterized by solution size is fixed-parameter tractable (FPT) in graphs that do not contain the claw (K1,3, the complete bipartite graph on four vertices where the two parts have one and three vertices, respectively) as an induced subgraph. We present an algorithm that uses 2O(k2)nO(1) time and polynomial space to decide whether a claw-free graph on n vertices has a dominating set of size at most k. Note that this parameterization of Dominating Set is W[2]-hard on the set of all graphs, and thus is unlikely to have an FPT algorithm for graphs in general.The most general class of graphs for which an FPT algorithm was previously known for this parameterization of Dominating Set is the class of Ki,j-free graphs, which exclude, for some fixed i,jN, the complete bipartite graph Ki,j as a subgraph. For i,j≥2, the class of claw-free graphs and any class of Ki,j-free graphs are not comparable with respect to set inclusion. We thus extend the range of graphs over which this parameterization of Dominating Set is known to be fixed-parameter tractable.We also show that, in some sense, it is the presence of the claw that makes this parameterization of the Dominating Set problem hard. More precisely, we show that for any t≥4, the Dominating Set problem parameterized by the solution size is W[2]-hard in graphs that exclude the t-claw K1,t as an induced subgraph. Our arguments also imply that the related Connected Dominating Set and Dominating Clique problems are W[2]-hard in these graph classes.Finally, we show that for any tN, the Clique problem parameterized by solution size, which is W[1]-hard on general graphs, is FPT in t-claw-free graphs. Our results add to the small and growing collection of FPT results for graph classes defined by excluded subgraphs, rather than by excluded minors.  相似文献   

12.
In automatic graph drawing a given graph has to be laid out in the plane, usually according to a number of topological and aesthetic constraints. Nice drawings for sparse nonplanar graphs can be achieved by determining a maximum planar subgraph and augmenting an embedding of this graph. This approach appears to be of limited value in practice, because the maximum planar subgraph problem is NP-hard.We attack the maximum planar subgraph problem with a branch-and-cut technique which gives us quite good, and in many cases provably optimum, solutions for sparse graphs and very dense graphs. In the theoretical part of the paper, the polytope of all planar subgraphs of a graphG is defined and studied. All subgraphs of a graphG, which are subdivisions ofK 5 orK 3,3, turn out to define facets of this polytope. For cliques contained inG, the Euler inequalities turn out to be facet-defining for the planar subgraph polytope. Moreover, we introduce the subdivision inequalities,V 2k inequalities, and the flower inequalities, all of which are facet-defining for the polytope. Furthermore, the composition of inequalities by 2-sums is investigated.We also present computational experience with a branch-and-cut algorithm for the above problem. Our approach is based on an algorithm which searches for forbidden substructures in a graph that contains a subdivision ofK 5 orK 3,3. These structures give us inequalities which are used as cutting planes.Finally, we try to convince the reader that the computation of maximum planar subgraphs is indeed a practical tool for finding nice embeddings by applying this method to graphs taken from the literature.  相似文献   

13.
A graph G is a circular-arc graph if it is the intersection graph of a set of arcs on a circle. That is, there is one arc for each vertex of G, and two vertices are adjacent in G if and only if the corresponding arcs intersect. We give a linear-time algorithm for recognizing this class of graphs. When G is a member of the class, the algorithm gives a certificate in the form of a set of arcs that realize it.  相似文献   

14.
In a graph, a vertex is simplicial if its neighborhood is a clique. For an integer k≥1, a graph G=(VG,EG) is the k-simplicial power of a graph H=(VH,EH) (H a root graph of G) if VG is the set of all simplicial vertices of H, and for all distinct vertices x and y in VG, xyEG if and only if the distance in H between x and y is at most k. This concept generalizes k-leaf powers introduced by Nishimura, Ragde and Thilikos which were motivated by the search for underlying phylogenetic trees; k-leaf powers are the k-simplicial powers of trees. Recently, a lot of work has been done on k-leaf powers and their roots as well as on their variants phylogenetic roots and Steiner roots. For k≤5, k-leaf powers can be recognized in linear time, and for k≤4, structural characterizations are known. For k≥6, the recognition and characterization problems of k-leaf powers are still open. Since trees and block graphs (i.e., connected graphs whose blocks are cliques) have very similar metric properties, it is natural to study k-simplicial powers of block graphs. We show that leaf powers of trees and simplicial powers of block graphs are closely related, and we study simplicial powers of other graph classes containing all trees such as ptolemaic graphs and strongly chordal graphs.  相似文献   

15.
We study extremal questions on induced matchings in certain natural graph classes. We argue that these questions should be asked for twinless graphs, that is graphs not containing two vertices with the same neighborhood. We show that planar twinless graphs always contain an induced matching of size at least n/40 while there are planar twinless graphs that do not contain an induced matching of size (n+10)/27. We derive similar results for outerplanar graphs and graphs of bounded genus. These extremal results can be applied to the area of parameterized computation. For example, we show that the induced matching problem on planar graphs has a kernel of size at most 40k that is computable in linear time; this significantly improves the results of Moser and Sikdar (2007). We also show that we can decide in time O(k91+n) whether a planar graph contains an induced matching of size at least k.  相似文献   

16.
《国际计算机数学杂志》2012,89(8):1635-1654
In this paper, we consider the minimum maximal matching problem in some classes of graphs such as regular graphs. We show that the minimum maximal matching problem is NP-hard even in regular bipartite graphs, and a polynomial time exact algorithm is given for almost complete regular bipartite graphs. From the approximation point of view, it is well known that any maximal matching guarantees the approximation ratio of 2 but surprisingly very few improvements have been obtained. In this paper we give improved approximation ratios for several classes of graphs. For example any algorithm is shown to guarantee an approximation ratio of (2-o(1)) in graphs with high average degree. We also propose an algorithm guaranteeing for any graph of maximum degree Δ an approximation ratio of (2?1/Δ), which slightly improves the best known results. In addition, we analyse a natural linear-time greedy algorithm guaranteeing a ratio of (2?23/18k) in k-regular graphs admitting a perfect matching.  相似文献   

17.
We consider the problem of coloring a planar graph with the minimum number of colors so that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem. We present a complete picture for the case with a single forbidden connected (induced or noninduced) subgraph. The 2-coloring problem is NP-hard if the forbidden subgraph is a tree with at least two edges, and it is polynomially solvable in all other cases. The 3-coloring problem is NP-hard if the forbidden subgraph is a path with at least one edge, and it is polynomially solvable in all other cases. We also derive results for several forbidden sets of cycles. In particular, we prove that it is NP-complete to decide if a planar graph can be 2-colored so that no cycle of length at most 5 is monochromatic.  相似文献   

18.
《国际计算机数学杂志》2012,89(8):1662-1672
Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977), pp. 79–84] proposed the supereulerian graph problem which seeks the characterization of graphs with a spanning Eulerian subgraph. Pulleyblank [A note on graphs spanned by Eulerian graphs, J. Graph Theory 3 (1979), pp. 309–310] showed that the supereulerian problem, even within planar graphs, is NP-complete. In this paper, we settle an open problem raised by An and Xiong on characterization of supereulerian graphs with small matching numbers. A well-known theorem by Chvátal and Erdös [A note on Hamilton circuits, Discrete Math. 2 (1972), pp. 111–135] states that if G satisfies α(G)≤κ(G), then G is hamiltonian. Flandrin and Li in 1989 showed that every 3-connected claw-free graph G with α(G)≤2 κ(G) is hamiltonian. Our characterization is also applied to show that every 2-connected claw-free graph G with α(G)≤3 is hamiltonian, with only one well-characterized exceptional class.  相似文献   

19.
There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs. A preliminary version of this paper appeared in the Proceedings of the 13th Annual International Computing and Combinatorics Conference (COCOON), Banff, Alberta, Canada (2007), pp. 394–405. N. Alon research supported in part by a grant from the Israel Science Foundation, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. This paper forms part of a Ph.D. thesis written by S. Gutner under the supervision of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.  相似文献   

20.
《国际计算机数学杂志》2012,89(11):1349-1356
A graph Sp,q,n refers to a signed graph with p nodes and q edges with n being the number of negative edges. We introduce two theorems to facilitate identification of the complete set of balanced signed graph configurations for any p-node Hamiltonian signed graph in terms of p, q and n. This allows for the development of computational procedures to efficiently determine the structural stability of a signed graph. This is potentially useful for the planning and analysis of complex situations or scenarios which can be depicted as signed graphs. Through the application of the theorems, the state of balance of a signed graph structure or its affinity towards balance can be determined in a more time-efficient manner compared to any explicit enumeration algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号