首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Background. The D ‐Amino acid oxidase activator (G72 or DAOA) is believed to play a key role in the regulation of central glutamatergic transmission which is seen to be altered in psychosis. It is thought to regulate D ‐amino acid oxidase (DAO), which metabolizes D ‐serine, a co‐agonist of NMDA‐type glutamate receptors and to be involved in dendritic arborization. Linkage, genetic association and expression studies have implicated the G72 gene in both schizophrenia and bipolar disorder. Aims. To examine the influence of G72 variation on brain function in the healthy population. Method. Fifty healthy volunteers were assessed using functional magnetic resonance imaging while performing a verbal fluency task. Regional brain activation and task‐dependent functional connectivity during word generation was compared between different rs746187 genotypes. Results. G72 rs746187 genotype had a significant effect on activation in the left postcentral and supramarginal gyri (FWE P < 0.05), and on the task‐dependent functional coupling of this region with the retrosplenial cingulate gyrus (FWE P < 0.05). Conclusions. Our results may reflect an effect of G72 on glutamatergic transmission, mediated by an influence on D ‐amino acid oxidase activity, on brain areas particularly relevant to the hypoglutamatergic model of psychosis. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Müller DJ, Zai CC, Shinkai T, Strauss J, Kennedy JL. Association between the DAOA/G72 gene and bipolar disorder and meta‐analyses in bipolar disorder and schizophrenia.
Bipolar Disord 2011: 13: 198–207. © 2011 The Authors.
Journal compilation © 2011 John Wiley & Sons A/S. Objective: The d ‐amino acid oxidase activator (DAOA, or G72) is involved in the oxidation of d ‐serine, an endogenous modulator of N‐methyl‐d ‐aspartate receptors and thus represents an important candidate in psychotic disorders. Several studies reported the DAOA/G72 gene to be associated with schizophrenia (SZ) and bipolar disorder (BD); however, the associated polymorphisms varied between SZ and BD. This study attempts to replicate the DAOA/G72 findings in BD and to conduct subgroup analyses based on the presence or absence of psychotic symptoms. Methods: Five polymorphisms of the DAOA/G72 gene (rs1341402, rs1935062, rs2391191, rs947267, and rs778294) were analysed for association with BD in a family‐based study design (303 core families including 916 individuals). We also conducted a meta‐analysis of DAOA/G72 polymorphisms in BD and SZ. Results: Marker rs1935062 was significantly associated with BD diagnosis in our sample (Z‐score for C‐allele = ?2.33, p = 0.02, uncorrected for genome‐wide multiple comparisons). When we examined the subset of BD patients with psychotic symptoms (157 families), no significant results were obtained. Our meta‐analysis yielded negative findings for DAOA/G72 markers in BD and positive findings for marker rs2391191 in SZ in East Asians. However, significant heterogeneity across studies limits interpretation. Conclusions: Our results provide evidence that suggests a possible role of the DAOA/G72 gene in BD and SZ. Marker rs1935062 may be specifically associated with BD, while marker rs2391191 may be associated with SZ but not with BD. Together with previous studies, these findings suggest that the DAOA/G72 gene confers susceptibility to both BD and SZ, but that different polymorphisms may potentially differentiate between these two disorders.  相似文献   

3.
At present, it is unclear whether ligands which bind at the benzodiazepine/GABA receptor complex play a tonic modulatory role with regard to striatal dopamine (DA) transmission. The present study was designed to examine the effects of Ro15-1788, a benzodiazepine (BZ) receptor antagonist, and SR 95531, a GABAA receptor antagonist, on striatal extracellular DA (DA[e]) concentrations in anesthetized and awake rats using the technique of in vivo microdialysis. Local administration of Ro15-1788 resulted in a dose-dependent increase in DA[e] in both anesthetized and awake animals. The Ro15-1788-induced increase in DA[e] was blocked by coadministration of the BZ agonist diazepam, as well as GABA. Local administration of SR 95531 also resulted in a dose-dependent alteration in striatal DA levels in both anesthetized and awake animals. The SR 95531-induced increase in DA was blocked by coadministration of GABA. The results suggest that GABA may play a tonic inhibitory role with regard to striatal DA transmission.  相似文献   

4.
Dopamine (DA) neurotransmission influences cognition and recovery after traumatic brain injury (TBI). We explored whether functional genetic variants affecting the DA transporter (DAT) and D2 receptor (DRD2) impacted in vivo dopaminergic binding with positron emission tomography (PET) using [11C]βCFT and [11C]raclopride. We examined subjects with moderate/severe TBI (N=12) ∼1 year post injury and similarly matched healthy controls (N=13). The variable number of tandem repeat polymorphism within the DAT gene and the TaqI restriction fragment length polymorphism near the DRD2 gene were assessed. TBI subjects had age-adjusted DAT-binding reductions in the caudate, putamen, and ventral striatum, and modestly increased D2 binding in ventral striatum versus controls. Despite small sample sizes, multivariate analysis showed lower caudate and putamen DAT binding among DAT 9-allele carriers and DRD2 A2/A2 homozygotes with TBI versus controls with the same genotype. Among TBI subjects, 9-allele carriers had lower caudate and putamen binding than 10/10 homozygotes. This PET study suggests a hypodopaminergic environment and altered DRD2 autoreceptor DAT interactions that may influence DA transmission after TBI. Future work will relate these findings to cognitive performance; future studies are required to determine how DRD2/DAT1 genotype and DA-ligand binding are associated with neurostimulant response and TBI recovery.  相似文献   

5.
The detection of changes in postsynaptic gene expression after the administration of mood stabilizers, alone or in combination with antipsychotics, and antidepressants in animal models of drug treatment, may represent a valuable strategy to explore the molecular targets of the mainstay treatments for bipolar disorder. In this study we investigated, in both acute and chronic paradigms, the expression of specific postsynaptic density genes (Homer1a, Homer1b/c, and PSD95) and genes putatively implicated in mood stabilizers mechanism of action (GSK3b, ERK) after administration of first (haloperidol) or second generation antipsychotics (quetiapine 30 mg/kg), alone or in combination with valproate. Moreover, we compared the effects of an antidepressant agent widely used in bipolar depression (citalopram) with a low dose of quetiapine (15 mg/kg), which has been demonstrated to display antidepressant action in bipolar depression.In striatal regions, Homer1a expression was strongly induced by haloperidol compared to all the other treatments. Haloperidol plus valproate also markedly induced Homer1a, but to a significant lesser extent than haloperidol alone. Also in the chronic paradigm haloperidol, but not haloperidol plus valproate, induced Homer1a expression in all the subregions of the caudate-putamen and in the nucleus accumbens core. The high dose of quetiapine significantly induced Homer1a in anterior cingulated, premotor and motor subregions of the cortex, and the extent of induction was significantly higher as compared to the lower dose. Oppositely, Homer1a expression was decreased in the cortex by citalopram acute administration.ERK gene was upregulated in cortex and striatum by the acute treatment with valproate and with the combination of haloperidol or quetiapine plus valproate, whereas no significant differences were noticed in GSK3b expression among treatments. PSD95 showed a significant upregulation by acute citalopram and by haloperidol plus valproate in both cortical and subcortical regions. Haloperidol and quetiapine 30 mg/kg, oppositely, significantly reduced the expression of the gene in the cortex.In conclusion, these results suggest that the combined treatment with a typical or an atypical antipsychotic plus valproate may induce differential modulation of postsynaptic genes expression when compared to the effects of these drugs individually administered.  相似文献   

6.
A number of linkage studies have previously implicated the region of chromosome 13q34 in schizophrenia. Chumakov and colleagues (2002) identified a gene complex called G72 (now termed d-amino acid oxidase activator: DAOA)/G30 in this region and performed association analyses of the DAOA/G30 as well as the d-amino-acid oxidase (DAAO) gene with schizophrenia. DAAO oxidizes d-serine, a potent activator of the N-methyl-d-aspartate (NMDA) type glutamate receptor in the human brain whereas the DAOA protein is considered an activator of DAAO. The interaction of these two genes has thus been implicated in the NMDA receptor regulation pathway in schizophrenia. To date, several studies have shown a relatively consistent positive association between schizophrenia and DAOA/G30, but not with DAAO. The aim of our study was to further evaluate the contributions of these genes to the susceptibility to schizophrenia using two different sample sets. Our sample consisted of 168 matched case-control pairs as well as a family-based sample (n=113) for transmission disequilibrium test. Significant associations between the DAOA/G30 M-7 and M-18 polymorphisms and schizophrenia were observed in our case-control sample whereas no associations were observed for DAAO markers. We also observed significant or suggestive transmission disequilibrium for DAOA/G30 M-7, M-23, and M-24 to probands with schizophrenia in our family-based sample. Subsequent analysis of haplotypes made up of four DAOA/G30 markers, one marker selected from each of two linkage disequilibrium blocks that were observed in our sample as well as both ends (M-7 and M-25), were also associated with schizophrenia. Our data provide further evidence that the DAOA/G30 locus may play a role in the pathophysiology of schizophrenia. Although no direct link to genetic polymorphism in these genes and NMDA receptor function has been revealed, the present findings support previous reports implicating DAOA/G30 as susceptibility genes for schizophrenia. Further research is warranted to determine the functional variation underlying these findings and to relate this to the pathophysiology of schizophrenia.  相似文献   

7.
Hyperactivity of striatal glutamatergic synaptic transmission in response to dopamine depletion plays a major role in the pathogenesis of parkinsonian motor symptoms. In the present study we investigated the impact, on this hyperactivity, of chronic dyskinesiogenic L-DOPA treatment, combined or not with high-frequency stimulation (HFS) of the subthalamic nucleus (STN). In vitro patch-clamp recordings were performed from striatal spiny neurons of hemiparkinsonian rats (intranigral 6-OHDA injection). Here we show that dyskinesiogenic L-DOPA treatment exacerbated striatal glutamatergic hyperactivity induced by 6-OHDA lesion. Chronic 5-day STN HFS had the opposite effect, reducing striatal glutamatergic transmission in both parkinsonian and dyskinetic animals. Consistently, chronic HFS stimulation could progressively ameliorate motor parkinsonian signs (akinesia) but, conversely, did not improve L-DOPA-induced dyskinesia (LID). Thus, the effects of L-DOPA and HFS on corticostriatal transmission seem to be dissociated. These data show for the first time that dyskinesiogenic L-DOPA treatment and chronic STN HFS with antiakinetic effects induce opposite plastic rearrangements in the striatum. The interaction between these two treatments provides further evidence that striatal glutamatergic hyperactivity is a pathophysiological correlate of akinesia rather than LID.  相似文献   

8.
9.
Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal di- vision of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neuro- kinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Indepen- dent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addi- tion to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum.  相似文献   

10.
目的 评价腺苷A2A受体拮抗剂(CSC)对左旋多巴(L-DOPA)诱发异动症大鼠行为、纹状体A2A受体和代谢型谷氨酸受体5亚型(mGluR5)蛋白表达的影响.方法 6-羟多巴胺(6-OHDA)立体定向损毁大鼠右内侧前脑束,建立单侧损毁帕金森病(PD)大鼠模型.采用随机数字表法将40只成功PD大鼠随机分为4组(每组10只):生理盐水组;L-DOPA 25 mg/kg+苄丝肼6.25 mg/kg组;CSC 2.5 mg/kg组;L-DOPA 25 mg/kg+苄丝肼6.25 mg/kg联合CSC 2.5 mg/kg组.给予大鼠每日2次腹腔注射,持续21 d.在治疗第2、9、11、18、21天观察大鼠行为学变化,Western blot检测纹状体区腺苷A2A受体和mGluR5的蛋白表达水平.结果 L-DOPA联合CSC组PD大鼠损毁对侧前肢跨步数显著增加,与治疗前比较差异有统计学意义,与L-DOPA组相比,前肢功能改善程度不随时间延长而减弱.单独CSC组治疗后对侧前肢跨步数明显增加,与治疗前比较差异有统计学意义,有疗效逐渐增加至稳定趋势.L-DOPA联合CSC组[(11±5)分]部分口颌及肢体异常不自主运动评分较L-DOPA组[(17±4)分]显著减少,差异有统计学意义(t=2.44,P<0.05).L-DOPA联合CSC治疗逆转了L-DOPA诱导的对侧旋转反应时间缩短和腺苷A2A受体、mGluR5蛋白表达的上调,差异均有统计学意义.结论 腺苷A2A受体与mGluR5均参与了L-DOPA诱发的异动症的发生发展,A2A受体拮抗剂能够改善PD运动症状,增强L-DOPA的抗PD效应且部分减轻异常不自主运动,对L-DOPA诱发的异动症的治疗有着较好的应用前景.
Abstract:
Objective To study the behavioural changes and biological effects of selective adenosine A2A receptor antagonist (CSC) in a rat model of levodopa(L-DOPA) -induced dyskinesia (LID).Methods The hemi-parkinsonian rat model was produced by stereotaxically injecting 6-OHDA to the right medial forebrain bundle. Rats were randomly divided into 4 treatment groups with a random number generating program to receive intraperitoneal injections twice daily for 21 days (n = 10): saline, L-DOPA at 25 mg/kg with benserazide at 6. 25 mg/kg, CSC at 2. 5 mg/kg alone and CSC at 2.5 mg/kg with L-DOPA at 25 mg/kg plus benserazide at 6. 25 mg/kg. Forepaw adjusting steps, abnormal involuntary movements (AIM) and rotational response duration were observed on 2, 9, 11,18 and 21 d. After sacrifice, the expression of adenosine A2A R and mGluR5 was observed by Western blot. Results Co-administration of LDOPA with CSC significantly increased the forelimb adjusting steps of parkinsonian rats during 21 days of treatment when compared to L-DOPA alone. CSC treatment alone increased the forelimb adjusting steps significantly. Co-administration of L-DOPA with CSC ( ( 11 ± 5 ) score) significantly decreased the AIM scores of limb and orolingual muscles when compared to L-DOPA alone (( 17 ± 4) score; t = 2. 44, P <0. 05). The subchronic L-DOPA treatment upregulated the striatal expression of adenosine A2A R and mGluR5. However, co-administration of L-DOPA with CSC reversed the shortening of the rotational motor response duration induced by L-DOPA administration during the period of the treatment and attenuated the LDOPA-induced upregulation of adenosine A2A R and mGluR5 expressions. Conclusions CSC improves motor function in a hemi-parkinson rat model, potentiates the antiparkinsonian effects with L-DOPA and partly attenuates LID. Co-administration of L-DOPA with CSC reverses the L-DOPA-induced upregulated expression of A2A R and mGluR5, indicating the involvement of both A2A R and mGluR5 in the onset and progression of LID. Adenosine A2AR antagonists may be promising drugs for treatment of LID.  相似文献   

11.
We previously reported that Sprague-Dawley (SD) rats are significantly more sensitive than Long Evans (LE) rats to disruption of prepulse inhibition (PPI) of the startle reflex by the dopamine agonists, apomorphine (APO) and D-amphetamine (AMPH). This susceptibility is inherited through F1 (SD x LE) and N2 backcross (F1 x SD) generations via an orderly pattern (SD>N2>F1>LE). Here we examined systemic APO (0.5 mg/kg) and AMPH (4.5 mg/kg) modulation of neural activity in four regions of the striatum suspected to be involved in the dopaminergic regulation of PPI - dorsolateral (dlCPu) and medial (mCPu) caudate/putamen and core (NACc) and medial shell (NACms) regions of nucleus accumbens - under conditions that mimicked those used to assess PPI. Immunohistochemical quantification of c-Fos protein expression was used as the surrogate measure of neural activity in SD and LE rats and their F1 crosses. Vehicle-treatment showed significant regional differences in Fos expression, particularly between the dlCPu and the other three areas, but no strain-related differences were observed. Three of four brain areas examined (dlCPu, mCPu and NACc) exhibited drug-induced changes in Fos expression--APO decreased and AMPH increased Fos expression in each region. The aggregate effect across these three regions revealed Fos expression to be significantly greater in LE compared to SD rats for both drugs, with F1 rats intermediate. This pattern of inheritance (LE>F1>SD) reveals an inverse relationship between striatal Fos expression and PPI sensitivity for these drugs; and a positive relationship with reported heritable differences in D2-linked G-protein binding in the CPu and NACc, and with locomotor activation/suppression by AMPH and APO.  相似文献   

12.

Objective

The relation was investigated between hemiparetic arm function improvement and brain cortical perfusion (BCP) change during voluntary muscle contraction (VOL), EMG-controlled FES (EMG-FES) and simple electrical muscle stimulation (ES) before and after EMG-FES therapy in chronic stroke patients.

Methods

Sixteen chronic stroke patients with moderate residual hemiparesis underwent 5 months of task-orientated EMG-FES therapy of the paretic arm once or twice a week. Before and after treatment, arm function was clinically evaluated and BCP during VOL, ES and EMG-FES were assessed using multi-channel near-infrared spectroscopy.

Results

BCP in the ipsilesional sensory-motor cortex (SMC) was greater during EMG-FES than during VOL or ES; therefore, EMG-FES caused a shift in the dominant BCP from the contralesional to ipsilesional SMC. After EMG-FES therapy, arm function improved in most patients, with some individual variability, and there was significant improvement in Fugl–Meyer (FM) score and maximal grip strength (GS). Clinical improvement was accompanied by an increase in ipsilesional SMC activation during VOL and EMG-FES condition.

Conclusion

The EMG-FES may have more influence on ipsilesional BCP than VOL or ES alone.

Significance

The sensory motor integration during EMG-FES therapy might facilitate BCP of the ipsilesional SMC and result in functional improvement of hemiparetic upper extremity.  相似文献   

13.
Summary. With in vivo microvoltammetry, the dopamine (DA) receptor antagonists, clozapine (D4/D2), haloperidol (D2) and the selective D4 antagonist, PNU-101387G, were evaluated for their effects on DA and serotonin (5-HT) release within A10 neuronal terminal fields [mesocortical, prefrontal cortex (PFC), mesolimbic, nucleus accumbens, (NAcc)] and within A9 neuronal terminal fields [nigrostriatal, caudate putamen (CPU)], in chloral hydrate anesthetized rats. Clozapine, which also has 5-HT2 receptor antagonist properties, significantly (p < 0.001) increased DA release within A10 terminal fields, PFC and NAcc; DA release was not increased by clozapine within A9 terminals, CPU. Serotonin release was significantly (p < 0.001) increased by clozapine within A10 and A9 terminal fields. Haloperidol significantly (p < 0.001) increased DA release within PFC, dramatically and significantly (p < 0.001) increased DA release within CPU, but not within NAcc; haloperidol had a small but statistically significant (p < 0.05) increase on 5-HT release within PFC [only at the highest dose studied (2.5 mg/kg)] and within CPU [only at the lowest dose studied 1.0 mg/kg) (p < 0.05)]. The selective D4 antagonist, PNU-101387G dramatically and significantly (p < 0.001) increased DA release within PFC, modestly, but significantly (p < 0.001) increased DA release within CPU, did not alter DA release within NAcc at the lowest dose studied (1.0 mg/kg) and significantly (p < 0.05) decreased DA release within NAcc at the highest dose studied (1.0 mg/kg). The selective D4 antagonist did not affect 5-HT release within either A10 or A9 terminal fields. The present data are discussed in terms of the neurochemistry, antipsychotic activity, and side effect profiles of clozapine and haloperidol, in order to provide comparative profiles for a selective D4 antagonist, PNU-101387G. Received January 13, 1998; accepted April 27, 1998  相似文献   

14.
Human studies of dopamine D2/D3 receptors using 18F-fallypride-PET in normal volunteers were performed to evaluate brain distribution in striatal and extrastriatal regions, evaluate metabolites in blood plasma, establish PET imaging protocol for this new radiotracer, evaluate graphical methods of analysis to quantitate D2/D3 receptors, and assess the ability of 18F-fallypride to measure changes in D2/D3 receptors with aging as a model. Subjects (6; 21-63 years) had a PET scan on a Siemens HR+ scanner with 18F-fallypride and a T1-weighted MRI scan on a 1.5T GE scanner for purposes of anatomical coregistration with PET. A 3-h PET scan with 18F-fallypride (0.07 mCi/Kg) was carried out on each subject and repeated in 4-6 weeks. Arterial or arterialized venous blood was obtained in all subjects in order to evaluate blood activity levels and analyze metabolites in the plasma. Brain regions-of-interest were identified and drawn using PET and PET-MR coregistered images. PET data was analyzed using graphical methods in which cerebellum was used as the reference region providing distribution volume ratios (DVR) from which binding potential (BP) was derived and used as a measure of concentration of receptors. Distribution of 18F-fallypride was consistent in all subjects studied and the rank order of receptor concentration was putamen > caudate > thalamus = pituitary > amygdala > colliculi > substantia nigra > hippocampus = temporal cortex > parietal cortex = occipital cortex = orbitofrontal cortex. For younger subjects, BP ranged from 37 for the putamen to 0.4 for orbitofrontal cortex, with a test-retest error of about 10%. Both hydrophilic and lipophilic metabolites were observed in arterial blood plasma and analyses showed approx. 30-40% of plasma radioactivity at 3 h was 18F-fallypride. With aging, all brain regions exhibited a significant decrease (>10% per decade) in binding of 18F-fallypride. PET studies with 18F-fallypride are thus suitable to study changes in D2/D3 receptors in striatal and extrastriatal brain regions.  相似文献   

15.
Maternal smoking contributes to preterm delivery; glucocorticoids are the consensus treatment for prematurity, thus producing fetal coexposure to nicotine and dexamethasone. We administered nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers. Later in gestation, animals received dexamethasone (0.2 mg/kg). We assessed developmental indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, evaluating brain regions possessing major ACh projections and cell bodies; we measured choline acetyltransferase activity, hemicholinium-3 binding to the presynaptic choline transporter and nicotinic ACh receptor binding. In general, nicotine and dexamethasone, alone or in combination, produced regionally-selective increases or decreases in choline acetyltransferase activity but larger, consistent elevations in hemicholinium-3 and nicotinic ACh receptor binding; the patterns were indicative of ACh synaptic hyperactivity. Superimposed on these overall effects, there were significant disparities in temporal and regional relationships among the different treatments, notably involving effects that emerged later in life, after a period of apparent normality. This indicates that nicotine and dexamethasone do not simply produce an initial ACh neuronal injury that then persists throughout the lifespan but rather, they alter the developmental trajectory of ACh function. Most importantly, the combined exposure to nicotine + dexamethasone elicited greater changes than either of the individual exposures, involving both additive and synergistic effects. Our results thus point to potentially worse neurobehavioral outcomes of the pharmacotherapy of preterm labor in the offspring of smokers.  相似文献   

16.

Introduction

Several hemostatic system components, including factor X (FX), contribute to cancer progression. The Protein Z (PZ)/protein Z-dependent protease inhibitor (ZPI) complex directly inhibits factor Xa proteolytic activity. The aim of this study was to determine the antigenic distribution of ZPI and PZ, in relation to FX, as well as indicators of blood coagulation activation (F1+2 and fibrin) in human colon cancer tissue.

Materials & methods

Studies were performed on human colon cancer fragments. Immunohistochemical (IHC) ABC procedures and double staining method employed polyclonal antibodies against PZ, FX, F1+2 and monoclonal antibodies against ZPI and fibrin. In-situ hybridization (ISH) methods employed biotin-labeled 25-nucleotide single-stranded DNA probes directed to either FX, PZ or ZPI mRNAs.

Results

Expression of FX, PZ and ZPI in association with colon cancer cells was observed by IHC. Moreover, the presence of both F1+2 and fibrin in association with colon cancer cells was found, which indicates that blood coagulation activation proceeds extravascularly at the tumor site. Furthermore, expression of FX and PZ was visualized in association with endothelial cells. In turn, colon cancer-associated macrophages were characterized by FX , PZ and ZPI presence. The double staining studies revealed strong FX/PZ, FX/ZPI, as well as PZ/ZPI co-localization on colon cancer cells. ISH studies revealed the presence of FX mRNA, PZ mRNA and ZPI mRNA in colon cancer cells indicating induced synthesis of these proteins.

Conclusions

The localization of PZ/ZPI and FX in colon cancer cells indicates that PZ/ZPI may contribute to anticoagulant events at the tumor site. Strong co-localization of PZ/ZPI and FX in cancer cells, and the presence of the mRNAs encoding the proteins, suggests their role in the tumor's biology. However, the presence of F1+2 and fibrin at the colon cancer site also suggests that the regulation of FXa by the PZ/ZPI complex at this site is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号