首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FRP bars are made of innovative materials, and use of these bars in residential and commercial buildings and infrastructure could result in their increased applications. This requires establishment of fire resistance of the FRP bar RC. This paper describes the results of a parametric study that was carried out on hybrid and carbon FRP bar RC beams. The influence of concrete strength and load ratio on the high temperature performance of beams was investigated. The study used finite element modelling and was conducted with the help of numerical models that were calibrated previously by the authors against the data of experimentally tested beams. It was found that the beam strength and stiffness reduce in the same proportion between two consecutive load ratios and are nearly uninfluenced by the concrete strength. The amount of load was found to be a critical factor for the beam thermal resistance. Preliminary guidance for FRP RC beam design in fire situation is provided on the basis of findings of the study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents results from an experimental study on residual capacity of fire‐damaged high‐strength concrete (HSC) beams. Four reinforced concrete (RC) beams, fabricated with HSC, were first subject to structural loading and fire exposure with a distinct cooling phase and then loaded to failure upon cooldown to ambient conditions to evaluate residual capacity. Temperatures, deflections, and spalling in the beams were monitored during heating and cooling phases of fire exposure. Further, residual capacity, strains at critical section, and crack patterns (failure mode) of fire‐damaged beams were recorded during residual capacity tests. Results from experiments indicate that the load level during fire exposure, duration of heating phase, rate of cooling, extent (type) of spalling, and duration of postcooling storage influence residual deformations and also residual capacity of RC beams. Further, fire‐damaged HSC beams can recover 40% to 70% of their flexural capacity with respect to their room temperature design capacity provided they survive the entire duration of fire exposure.  相似文献   

3.
In this work, we investigated the thermal behaviour of a carbon‐fibre composite impregnated with nano‐alumina‐based nanocomposites. First of all, we demonstrated that it is possible to obtain good dispersion and distribution of nanoparticles by mechanical mixing. In all the studied filler percentages, the presence of the ceramic filler did not affect the processability of the blends and the mechanical properties of the composites. First, the thermal stability of the nanocomposites was investigated by thermogravimetric analysis (TGA). Then, the fire reaction of the fibre‐reinforced composites was studied at different heat fluxes, by TGA, cone calorimeter and exposure to a direct flame. In presence of an oxidizing hyperthermal environment, the experimental data suggested the role of ceramic particles as anti‐oxidizer agent for the char and the carbon fibres. Moreover, the use of alumina nanoparticles allowed a slight reduction of heat release rate. Particularly at a heat flux of 35 kW/m2, the burnt material containing the higher quantity of nano‐alumina maintained a residual structural integrity because of the higher presence of char that bound together the fibres. To estimate the integrity of the composites after exposure to a direct flame (heat flux 500 kW/m2), mechanical tests were carried out on the burnt specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The influence of the orientation of carbon fibres on the reaction‐to‐fire characteristics of a layered composite has been investigated in detail. 8552/IM7 prepregs were laid up to give unidirectional and quasi‐isotropic laminates. Specimen thickness (0.25 to 8.0 mm) and heat flux (15 to 80 kW/m2) were varied for irradiation. Fundamental reaction‐to‐fire properties of this composite are interpreted on the basis of the matrix components: epoxy resin and polyethersulfone. Cone calorimetry and temperature distributions through the laminate showed that the velocity and degree of combustion are dominated by fibre orientation for a given resin. In general, a quasi‐isotropic fibre orientation leads to faster ignition, because of preferred delaminations, but retards combustion processes more effectively than a unidirectional lay‐up. Migration velocities of the pyrolysis zone were measured. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The structural performance of polymer composites reinforced with plant fibres when exposed to fire was experimentally evaluated and compared against an E‐glass fibre laminate. Fire testing under combined one‐sided radiant heating and static tensile loading revealed that flax, jute, or hemp fibre composites experience more rapid thermal softening and fail within much shorter times than the fibreglass laminate, which is indicative of vastly inferior structural performance in fire. The plant fibre composites soften and fail before the onset of thermal decomposition of the plant fibres and polymer matrix, whereas the E‐glass fibres provide the composite with superior tensile properties to higher temperatures and higher applied tensile stresses. The tensile performance of the three types of plant fibre composites in fire was not identical. When exposed to the same radiant heat flux, the flax fibre composite could withstand higher tensile stresses for longer times than the hemp and jute laminates, which showed similar performance.  相似文献   

6.
In this paper, the temperature fields of unprotected and protected aluminium‐alloy I‐beams heated on three sides were calculated using the finite element method. The calculated temperature results were compared with the incremental temperature rise formulas specified in Eurocode 9. Next, finite element models were developed to simulate the flexural behaviour and the flexural–torsional buckling behaviour of aluminium‐alloy I‐beams under fire. The calculated results were validated by experimental data acquired at both ambient and high temperatures. Subsequently, simplified formulas for calculating critical temperatures for 5083‐H112 and 6060‐T66 aluminium‐alloy beams were proposed based on parametric analysis, and the results obtained using these formulas were compared against equivalent values calculated in accordance with Eurocode 9 standards. In terms of engineering applications, findings indicate that increases in the load level, the global stability coefficient, and the ratio of fireboard thickness to thermal conductivity reduce the critical temperatures of aluminium‐alloy beams. In most cases, designs using the method of checking load bearing capacity at high temperature published in the Eurocode 9 would tend to be conservative. Finally, when the global stability coefficient was greater than 0.8, the critical temperatures in some regions measured slightly higher than the calculated simplified value. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
S. Eibl  D. Swanson 《火与材料》2018,42(2):234-243
This work investigates the influence of the out‐of‐plane orientation of carbon fibers on the reaction‐to‐fire characteristics of polymer matrix composites. A deep insight into combustion processes is gained, which is necessary to fully understand and assess advantages of composites with out‐of‐plane fiber angles. Epoxy‐based Hexply 8552/IM7 specimens with primarily low fiber angles between 0° and 15° are characterized by cone calorimetry. Heat release during fire is greatly affected by the out‐of‐plane fiber angle because of the thermal boundaries created by the fibers. The advancement of the pyrolysis front during fire was determined from peak heat release rates and validated by temperature measurements along the back surface of the panels, representing a novel method of determining position‐dependent pyrolysis migration velocity. These measurements show a transverse shift in pyrolysis front velocity for increasing out‐of‐plane fiber angles. Pyrolysis pathways between the fiber boundaries facilitate faster combustion through the composite thickness, especially for increasing angles from 0° to 15°. It was determined that under the chosen conditions, the pyrolysis front advances approximately 4 times faster when propagating parallel to the fibers than perpendicular.  相似文献   

8.
This paper presents the results of an experimental investigation on the fire retardancy properties of glass fibre–reinforced polyester (GFRP) composites with bisphenol‐A vinylester and isophthalic polyester as matrices and low electrical conductivity E‐glass fibres as reinforcement. The fire protection systems tested were alumina trihydrate (ATH), decabromodiphenyl ether (DBDE), and antimony trioxide (Sb2O3). A mass loss cone calorimeter was used to obtain the properties of heat release rate (HRR), peak HRR, total heat released, total mass loss, time to ignition, and time of combustion. Moreover, limiting oxygen index (LOI), UL‐94, and glow‐wire tests were also performed. The fire tests were carried out in order to investigate if the combination of ATH and DBDE could have “additive,” “antagonistic,” or “synergistic” effects on the flame retardant properties of the GFRP studied in this work. In addition, the influence of the ATH content variation on flame retardant properties was also evaluated. The results indicate that the sole addition of ATH at 47.7 phr could lead to the complete inhibition of the composites ignition, while the materials containing DBDE exhibit ignition and flame propagation in the cone calorimeter test.  相似文献   

9.
In this study, glass fiber reinforced polyester composites were coated with carbon nanofiber/clay/ammonium polyphosphate (CCA) paper and carbon nanofiber/exfoliated graphite nanoplatelets/ammonium polyphosphate (CXA) paper. The composites were exposed to a heat flux of 35 kW/m2 during the cone calorimeter testing. The testing results showed a significant reduction in both heat release rates and mass loss rates. The peak heat release rate (PHRR) of CCA and CXA composite samples in the major decomposition period are 23 and 34% lower than the control sample, respectively. The time to reach the PHRR for the CCA and CXA composite samples are ~ 125% longer than the control sample. After the composite samples were exposed to heat for different time periods, their post‐fire mechanical properties were determined by three‐point bending testing. The three‐point bending testing results show that the composite samples coated with such hybrid papers exhibit more than 20% improvement in mechanical resistance at early stages of combustion. The mechanism of hybrid carbon nanofiber paper protecting the underlying laminated composites is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Ning Tian  Aixi Zhou 《火与材料》2016,40(3):396-415
The ignition characteristics of combustible solids are affected by many factors such as material properties, external heating source, and surrounding environmental conditions. In practice, these factors can vary significantly from one application to another. Thus, it is important to evaluate the sensitivity and uncertainty aspects of the effect of these factors on ignition. This study attempts to achieve this goal through sensitivity and uncertainty analyses on the piloted ignition of fiber‐reinforced polymer (FRP) composite panels. A Monte Carlo simulation using the Latin hypercube sampling method was employed to conduct sensitivity and uncertainty analyses. An integral model combining a general thermal thickness model with a heating rate‐related ignition temperature criterion was used as the ignition prediction model. Time‐to‐ignition was evaluated as the output parameter against the variations of input parameters such as material properties, external heating source, and surrounding environmental conditions. In addition, to identifying important sensitivity factors and uncertainty ranges of piloted ignition, a critical thermal thickness was found for the composite panels. These findings can serve as guides for the fire safety design of FRP composite materials for various applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Our present paper summarizes the shortcomings in the current fire‐resistant design of oversized steel structures and proposes a method for overall stability analysis of steel structures in the event of fire. The Fire Dynamics Simulator (FDS) software platform–based large‐eddy simulation technology can accurately reflect the environment in a fire scenario and correctly predict the spatial–temporal change in the smoke temperature field within an oversized space. Adopting the FDS software and finite element structural analysis (ANSYS) coupling can fundamentally overcome the natural defect of adopting the International Organization for Standardization (ISO) standard curve (or other indoor homogeneous temperature increase curves) that substitutes a point for the overview of a field. They reflect the structural additional internal force and internal force redistribution incurred by the gradient temperature difference of the spatial–temporal changing nonhomogeneous temperature field and both theoretically and technically realize the analysis of structural heat transfer and mechanical properties in a natural fire. Furthermore, a modified model to predict the steel temperature curve in localized fire is also proposed. The localized fire in large spaces can be treated as a point fire source to evaluate the flame thermal radiation to steel members in the modified model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The present work resumes the experimental and numerical research carried out for the development of a numerical tool able of simulating the tensile behaviour of steel fibre reinforced self-compacting concrete (SFRSCC). SFRSCC is assumed as a two phase material, where the nonlinear material behaviour of SCC matrix is modelled by a 3D smeared crack model, and steel fibres are assumed as embedded short cables distributed within the SCC matrix according to a Monte Carlo method. The internal forces in the steel fibres are obtained from the stress–slip laws derived from the executed fibre pullout tests. The performance of this numerical strategy was appraised by simulating the tensile tests carried out. The numerical simulations showed a good agreement with the experimental results.  相似文献   

13.
This study investigates the use of integral, hybrid intumescent thermal barriers (mats) to provide surface protection to the core fibre‐reinforced polyester composite structural integrity when exposed to a fire or heat source. Glass fibre‐reinforced composites protected by intumescent mats/fabrics containing silicate fibres, expandable graphite and in some cases borosilicate glass bounded together by an organic matrix have been evaluated for fire performance under a constant heat flux of 50kW/m2. The effect of insulative fabric thickness as well as chemical composition on the flammability of the resultant hybrid composites is evaluated. Glass fibre‐reinforced polyester (GRP) composites without any surface protection have a relatively higher time‐to‐ignition and peak heat release rate values when compared with core composites protected by insulative fabrics. Thermograms representing the variation of temperature on the reverse side of the hybrid composites with time when exposed to a constant heat flux show that the inclusion of intumescent surface barriers results in retarded temperature increments within the core GRP composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This publication presents the experimental and numerical methods to model the devolatilization process of a glass‐fibre‐reinforced polyester/balsa‐cored sandwich material on small scale. The fundamental modelling of the source term in pyrolysis‐based fire simulations requires as input data the thermochemical properties of solid fuel and the kinetic parameters of the devolatilization process. First, the thermal decomposition of both elements composing the sandwich structure was studied by thermogravimetry coupled with gas analysis, in air and pure nitrogen atmospheres at several heating rates, in order to define a comprehensive multi‐step reaction pathway. A differential equation system is defined to model these decomposition processes. The kinetic parameters were then estimated by solving the system of equations by an inverse problem. Second, the fire behaviour of each element was studied separately and then combined in the sandwich structure on the cone calorimeter. In addition, numerical simulations with Fire Dynamics Simulator were performed to gradually assess the ability of the model(s) to reproduce each element composing the sandwich structure. Numerical and experimental results are compared and then discussed. Overall, the model provides a good agreement with the experimental data and encourages to model higher scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This study focused on the mechanical behavior of reinforced lightweight aggregate concrete (RLAC) walls under repeated horizontal loads after a standard temperature‐rising fire‐resistance test and compared the specimen walls' ultimate loads, yielding loads, cracked loads, stiffness, and ductility with those of reinforced normal‐weight aggregate concrete (RNAC) walls. Steel reinforcing bar spacing, aggregate types, wall widths, and high temperatures were variables in this study. The experimental results showed that, after the fire‐resistance test, the smaller the steel reinforcing bar spacing of RLAC walls, the higher the yield and ultimate loads, yet the worse the ductility and the hysteresis loop's energy, whereas the greater the width of the wall, the greater the stiffness and the higher the hysteresis loop's energy. The differences in terms of stiffness, ductility, and hysteresis between RLAC walls with and without the fire‐resistance test were insignificant, indicating that RLAC walls do not lose their basic mechanical behavior during a high‐temperature fire. RNAC walls showed, indeed, a significant downward trend for strength and hysteresis after the fire‐resistance test, but the decrease was much less clear for stiffness. Therefore, RLAC walls did show better seismic resistance than RNAC walls under the same testing conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This research evaluates the effects of applying different kinetic models (KMs), developed based on thermal analysis using thermogravimetric analysis data, when used in typical 1D pyrolysis models of fiberglass‐reinforced polymer (FRP) composites. The effect of different KMs is isolated from the FRP heating by conducting pyrolysis modeling based on measured temperature gradients. Mass loss rate simulations from this pyrolysis modeling with various KMs show changes in the simulations due to applying different KM approaches are minimal in general. Pyrolysis simulations with the most complex KM are conducted at several heat flux levels. Mass loss rate comparison shows there is good overlap between simulations and the experimental data at low incident heat fluxes. Comparison shows there is poor overlap at high incident heat fluxes. These results indicate that increasing complexity of KMs to be used in pyrolysis modeling is unnecessary for these FRP samples and that the basic assumption of considering thermal decomposition of each computational cell in comprehensive pyrolysis modeling as equivalent to that in a thermogravimetric analysis experiment becomes inapplicable at depth and higher heating rates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
隧道内液化天然气管道泄漏火灾温度场的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
钱新明  刘牧  刘振翼 《化工学报》2009,60(12):3184-3188
以某实际液化天然气(LNG)输运工程为例,采用计算流体动力学方法,建立隧道内LNG管道泄漏火灾的数学模型,分别以3种不同的泄漏情况对LNG泄漏火灾流场进行了数值模拟计算,得到了3种不同泄漏强度的LNG火灾温度场的实时分布情况,并分别对其火灾温度场随时间的变化及危险性进行了分析。结果表明:泄漏强度最小的情况下,火灾发生后隧道温度升幅不大,温度变化幅度平缓,危险性相对较小;泄漏强度居中的情况下,火灾发生后隧道内温度变化幅度较大,变化趋势较为剧烈,危险性显著增加;泄漏强度最大的情况下,火灾发生后隧道内温度是3种情况中最高的,且隧道内会出现烟气堆积的情况,十分危险,应着力避免此类事故的发生。  相似文献   

18.
This study aimed to investigate the effects of blend composition on packaging‐related properties of poly(lactic acid) (PLA) and low density polyethylene (LDPE) blown films. Blend films with PLA contents of 5–20 wt% were produced and compared. Scanning electron micrographs of cross‐sectional cryofractured surfaces of the blend films revealed that in situ fibre‐reinforced composites were obtained. Viscosity ratio of the polymer components of ca 1 confirmed that fibre formation was favourable for this blend system. PLA microdomains were dispersed throughout the film in forms of long fibres (length‐to‐diameter ratio > 100) and ribbons. The number of fibres and ribbons increased with an increase of PLA content. Critical content of PLA was found to be 20 wt% for effective improvement of both moduli and gas barrier properties. Incorporation of poly[ethylene‐co‐(methyl acrylate)] compatibilizer showed minimal effect on PLA structure. However, it did improve moduli and O2 barrier properties when sufficient amount (1.5 pph) was used in 10 wt% PLA/LDPE. In short, flow behaviour, ratio of polymer components and degree of compatibility together played intricate roles in the morphology and hence mechanical and transport properties of PLA/LDPE immiscible blends. © 2017 Society of Chemical Industry  相似文献   

19.
The present study evaluates on the static tensile behavior of glass fiber reinforced polymer (GFRP) composites at 50% and 70% volume fractions of reinforcement tested at room (25 °C), 70 °C, 90 °C, and 110 °C temperatures with 1, 10, 100, 500, and 1000 mm/min crosshead speeds to investigate the impact of high temperature on the mechanical properties and different dominating failures modes. The experimental results reveal that with increase in crosshead speeds the tensile strength of the composite is increasing. The effect of crosshead speeds and temperature with changing fiber volume fractions affects the GFRP composite. Although both the composite systems are found to be crosshead speed sensitive. Crosshead speed sensitivity seems to be more unpredictable at high temperature and at high crosshead speed. Furthermore, it appears to be more unprecedented nature of fluctuation with high fiber volume fraction. The crucial parameters required during the materials designing in various structural components were evaluated and modelled with the help of Weibull constitutive model. The fractography analyses were done to identify the various dominating failure modes in the GFRP composite. There was no significant change found in the glass transition temperatures (Tg) of both the composite system when exposed to different temperature environments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44715.  相似文献   

20.
A nonionic surfmer (MAA‐EO23C12) was prepared and reacted with acrylamide, acrylic acid, and a double tailed hydrophobic monomer (BTMAM) to synthesize a surface‐active hydrophobically associating copolymer (SHAP) through photoinitiated free radical copolymerization in aqueous solution. Fourier transform infrared and 1H‐nuclear magnetic resonance spectroscopy were used to characterize the functional monomer and the SHAP. Several performance evaluations, such as viscosification property, temperature resistance, salt tolerance, and shear resistance, were also conducted. Experiment results demonstrated that the introduced nonionic surfmer and hydrophobic monomer could endow the copolymer with excellent temperature resistance, salt tolerance, and shear resistance capability at low concentration. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46569.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号