首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
At low Mach numbers, Godunov‐type approaches, based on the method of lines, suffer from an accuracy problem. This paper shows the importance of using the low Mach number correction in Godunov‐type methods for simulations involving low Mach numbers by utilising a new, well‐posed, two‐dimensional, two‐mode Kelvin–Helmholtz test case. Four independent codes have been used, enabling the examination of several numerical schemes. The second‐order and fifth‐order accurate Godunov‐type methods show that the vortex‐pairing process can be captured on a low resolution with the low Mach number correction applied down to 0.002. The results are compared without the low Mach number correction and also three other methods, a Lagrange‐remap method, a fifth‐order accurate in space and time finite difference type method based on the wave propagation algorithm, and fifth‐order spatial and third‐order temporal accurate finite volume Monotone Upwind Scheme for Conservation Laws (MUSCL) approach based on the Godunov method and Simple Low Dissipation Advection Upstream Splitting Method (SLAU) numerical flux with low Mach capture property. The ability of the compressible flow solver of the commercial software, ANSYS FLUENT , in solving low Mach flows is also demonstrated for the two time‐stepping methods provided in the compressible flow solver, implicit and explicit. Results demonstrate clearly that a low Mach correction is required for all algorithms except the Lagrange‐remap approach, where dissipation is independent of Mach number. © 2013 Crown copyright. International Journal for Numerical Methods in Fluids. © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43 : 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we present a high‐order discontinuous Galerkin method (DGM) for simulating variable density flows at low Mach numbers. The corresponding low Mach number equations are an approximation of the compressible Navier–Stokes equations in the limit of zero Mach number. To the best of the authors'y knowledge, it is the first time that the DGM is applied to the low Mach number equations. The mixed‐order formulation is applied for spatial discretization. For steady cases, we apply the semi‐implicit method for pressure‐linked equation (SIMPLE) algorithm to solve the non‐linear system in a segregated manner. For unsteady cases, the solver is implicit in time using backward differentiation formulae, and the SIMPLE algorithm is applied to solve the non‐linear system in each time step. Numerical results for the following three test cases are shown: Couette flow with a vertical temperature gradient, natural convection in a square cavity, and unsteady natural convection in a tall cavity. Considering a fixed number of degrees of freedom, the results demonstrate the benefits of using higher approximation orders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes the implementation of a numerical solver that is capable of simulating compressible flows of nonideal single‐phase fluids. The proposed method can be applied to arbitrary equations of state and is suitable for all Mach numbers. The pressure‐based solver uses the operator‐splitting technique and is based on the PISO/SIMPLE algorithm: the density, velocity, and temperature fields are predicted by solving the linearized versions of the balance equations using the convective fluxes from the previous iteration or time step. The overall mass continuity is ensured by solving the pressure equation derived from the continuity equation, the momentum equation, and the equation of state. Nonphysical oscillations of the numerical solution near discontinuities are damped using the Kurganov‐Tadmor/Kurganov‐Noelle‐Petrova (KT/KNP) scheme for convective fluxes. The solver was validated using different test cases, where analytical and/or numerical solutions are present or can be derived: (1) A convergent‐divergent nozzle with three different operating conditions; (2) the Riemann problem for the Peng‐Robinson equation of state; (3) the Riemann problem for the covolume equation of state; (4) the development of a laminar velocity profile in a circular pipe (also known as Poiseuille flow); (5) a laminar flow over a circular cylinder; (6) a subsonic flow over a backward‐facing step at low Reynolds numbers; (7) a transonic flow over the RAE 2822 airfoil; and (8) a supersonic flow around a blunt cylinder‐flare model. The spatial approximation order of the scheme is second order. The mesh convergence of the numerical solution was achieved for all cases. The accuracy order for highly compressible flows with discontinuities is close to first order and, for incompressible viscous flows, it is close to second order. The proposed solver is named rhoPimpleCentralFoam and is implemented in the open‐source CFD library OpenFOAM®. For high speed flows, it shows a similar behavior as the KT/KNP schemes (implemented as rhoCentralFoam‐solver, Int. J. Numer. Meth. Fluids 2010), and for flows with small Mach numbers, it behaves like solvers that are based on the PISO/SIMPLE algorithm.  相似文献   

6.
We present a Roe‐type weak formulation Riemann solver where the average coefficient matrix is computed numerically. The novelty of this approach is that it is general enough that can be applied to any hyperbolic system while retaining the accuracy of the original Roe solver. We show applications to the compressible Euler equations with general equation of state. An alternative version of the method uses directly the eigenvectors in the averaging process, simplifying the algorithm. These new solvers are applied in conservative and path‐conservative schemes with high‐order accuracy and on unstructured meshes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Matrix‐free implicit treatments are now commonly used for computing compressible flow problems: a reduced cost per iteration and low‐memory requirements are their most attractive features. This paper explains how it is possible to preserve these features for all‐speed flows, in spite of the use of a low‐Mach preconditioning matrix. The proposed approach exploits a particular property of a widely used low‐Mach preconditioner proposed by Turkel. Its efficiency is demonstrated on some steady and unsteady applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This work presents an approximate Riemann solver to the transient isothermal drift ‐ flux model. The set of equations constitutes a non‐linear hyperbolic system of conservation laws in one space dimension. The elements of the Jacobian matrix A are expressed through exact analytical expressions. It is also proposed a simplified form of A considering the square of the gas to liquid sound velocity ratio much lower than one. This approximation aims to express the eigenvalues through simpler algebraic expressions. A numerical method based on the Gudunov's fluxes is proposed employing an upwind and a high order scheme. The Roe linearization is applied to the simplified form of A . The proposed solver is validated against three benchmark solutions and two experimental pipe flow data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A numerical method for 3D barotropic flows in turbomachinery   总被引:1,自引:0,他引:1  
A numerical method for the simulation of 3D inviscid barotropic flows in rotating frames is presented. A barotropic state law incorporating a homogeneous-flow cavitation model is considered. The discretisation is based on a finite-volume formulation applicable to unstructured grids. A shock-capturing Roe-type upwind scheme is proposed for barotropic flows. The accuracy of the proposed method at low Mach numbers is ensured by ad-hoc preconditioning, preserving time consistency. An implicit time advancing only relying on the algebraic properties of the Roe flux function, and thus applicable to a variety of problems, is presented. The proposed numerical ingredients, already validated in a 1D context and applied to 3D non-rotating computations, are then applied to the 3D water flow around a typical turbopump inducer.  相似文献   

14.
In the present work, we propose a reformulation of the fluxes and interpolation calculations in the PISO method, a well‐known pressure‐correction solver. This new reformulation introduces the AUSM+ ? up flux definition as a replacement for the standard Rhie and Chow method of obtaining fluxes and central interpolation of pressure at the control volume faces. This algorithm tries to compatibilize the good efficiency of a pressure based method for low Mach number applications with the advantages of AUSM+ ? up at high Mach number flows. The algorithm is carefully validated using exact solutions. Results for subsonic, transonic and supersonic axisymmetric flows in a nozzle are presented and compared with exact analytical solutions. Further, we also present and discuss subsonic, transonic and supersonic results for the well known bump test‐case. The code is also benchmarked against a very tough test‐case for the supersonic and hypersonic flow over a cylinder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We propose a pressure‐based unified solver for gas‐liquid two‐phase flows where compressible and incompressible flows coexist. Unlike the original thermo–Cubic Interpolated Propagation Combined Unified Procedure (CIP‐CUP) method proposed by Himeno et al (Transactions of the Japan Society of Mechanical Engineers, Series B, 2003), we split the advection term of the governing equations into a conservation part and into the rest. The splitting of advection term has two advantages. One is the high degree of freedom in choosing discretization schemes such as central‐difference schemes, upwind schemes, and Total Variation Diminishing (TVD) schemes. The other is the ease of implementation on unstructured grids. The advantages enable the analyses of various flows such as turbulent and supersonic ones in actual complicated boundaries. Therefore, the solver is useful for practical analyses. The solver was validated on the following test cases: subsonic single‐phase flows, incompressible single‐phase turbulent flows, and incompressible gas‐liquid two‐phase flows. With unstructured grids, we obtained the equivalent results as the ones with structured grids. After the validations, subsonic jet impinging on a water pool was calculated and compared with experimental results. It was confirmed that the calculated results were consistent with the experimental ones.  相似文献   

18.
This paper comprises an implementation of a fourth‐order Runge–Kutta discontinuous Galerkin (RKDG4) scheme for computing the open‐channel flow equations. The main features of the proposed methodology are simplicity and easiness in the implementation, which may be of possible interest to water resources numerical modellers. A version of the RKDG4 is blended with the Roe Riemann solver, an adaptive high‐order slope limiting procedure, and high‐order source terms approximations. A comparison of the performance of the proposed method with lower‐order RKDG models is performed showing a benefit of considering the RKDG4 model. The scheme is applied to computerize the Saint Venant system by considering benchmark tests that have exact solutions. Finally, numerical results are illustrated discussing the performance of the proposed high‐order model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
发展了一种基于鲁棒Riemann求解器和运动重叠网格技术计算直升机悬停旋翼流场的方法。基于惯性坐标系,悬停旋翼流场是非定常流场,控制方程为可压缩Reynolds平均Navier-Stoke方程,其对流项采用Roe近似Reimann求解器离散,使用改进的五阶加权基本无振荡格式进行高阶重构,非定常时间推进采用含牛顿型LUSGS子迭代的全隐式双时间步方法。为实施旋转运动和便于捕捉尾迹,计算采用运动重叠网格技术。计算得到的桨叶表面压力分布及桨尖涡涡核位置都与实验结果吻合较好。数值结果表明:所发展方法对桨尖涡具有较高的分辨率,对激波具有较好的捕捉能力,该方法可进一步推广到前飞旋翼粘性绕流的计算。  相似文献   

20.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号