首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
涡轮叶尖泄漏流动对涡轮通道内流动损失有着显著影响,叶顶冷气射流对控制叶尖泄漏流动和改善涡轮叶尖气热性能有重要意义。本文利用数值模拟方法,研究了叶顶冷气喷射位置和喷射流量对高压涡轮凹槽叶顶间隙泄漏流动控制的影响。文中重点分析了泄漏流动结构及涡轮气动效率的变化,探讨了冷气对刮削涡这一间隙内主控流动结构演化的影响。研究表明,冷气孔位置的变化对间隙内刮削涡的演化造成了一定影响,但并未造成涡轮整体效率的较大变化;而冷气喷射流量不仅影响到刮削涡结构演化,而且导致了涡轮级效率近0.5%的变化。  相似文献   

2.
明晰涡轮转子凹槽叶尖控制泄漏流动的物理机制,对凹槽叶尖结构优化和提升涡轮效率有重要意义。本文数值研究了跨音速高压涡轮凹槽叶尖的泄漏流动特性,对比分析了其与平叶尖泄漏损失和流动结构的差异,并研究了凹槽腔内流动结构改变对泄漏流动的影响。结果表明,凹槽叶尖对泄漏流动的堵塞分两个区域,分别受吸力侧空腔涡和削刮涡影响,改变外机匣相对转动速度会影响凹槽腔内流动结构的范围和强度,进而影响泄漏流动特性。本文的研究结果可为凹槽叶尖的设计提供指导。  相似文献   

3.
无导叶对转涡轮高压动叶叶尖开槽的研究   总被引:3,自引:0,他引:3  
对一无导叶对转涡轮高压动叶叶尖经开槽后的叶顶间隙流场进行了研究, CFD预测结果表明叶尖开槽后对转涡轮间隙泄漏损失的降低幅度超过了10%.对数值结果的分析表明,叶尖开槽后叶顶间隙通道内的粘性阻力增加,致使间隙流场结构发生变化,并引起了泄漏涡强减弱和泄漏流量下降;另外间隙泄漏流通过凹槽侧壁对叶片具有额外的做功能力.在本文的研究条件下,高压动叶叶尖开槽使得对转涡轮整级性能得到明显改善.  相似文献   

4.
具有叶尖小翼的压气机叶栅间隙流动分析   总被引:3,自引:0,他引:3  
采用数值模拟方法对利用不同安装方式叶尖小翼控制压气机叶栅间隙流动进行研究。结果表明,不同安装方式叶尖小翼都可以有效降低叶顶泄漏流速,削弱泄漏涡强度。叶尖小翼改变了叶尖负荷及泄漏涡运行轨迹,进而影响了叶尖流场不同涡系之间的相互作用。吸力面小翼削弱了泄漏涡,抑制了通道涡的发展,使得叶栅总损失降低。压力面小翼及组合小翼削弱了泄漏涡,但增强了通道涡及其与泄漏涡之间的相互作用,叶栅总损失增加。  相似文献   

5.
凹槽对动叶顶部流动和换热的影响   总被引:4,自引:0,他引:4  
应用数值方法和标准κ-ω紊流模型,研究了凹槽对燃气轮机透平动叶顶部间隙内流动与换热的影响,考虑了平顶部及4种不同深度凹槽的影响.结果显示,在凹槽内存在复杂的流动结构,不同凹槽深度时呈现出不同的涡结构.在凹槽深度小于3%相对叶高时,泄漏流动随凹槽深度的增加而减少,而高于3%时泄漏流量则几乎不变.凹槽的存在使得凹槽底部局部区域换热率较平顶部时升高,但总体来说,叶顶平均表面换热率随凹槽深度的增加而降低.  相似文献   

6.
在低速风洞实验台,对具有不同深凹槽结构平面叶栅在不同间隙尺度条件下的流动特性进行了实验研究。实验采用五孔气动探针和高灵敏度及高精度的压力扫描阀测量了叶栅出口截面的气动参数,对比分析了总压损失的展向分布,并在叶栅端壁和叶片表面进行墨迹显示。结果表明,深凹槽式叶顶结构应用于本文研究的叶栅上是可行的。深凹槽尾缘开口有利于降低叶顶间隙泄漏损失,凹槽前缘开口对前缘附近局部流动产生一定影响。对整个流动通道涡生成影响不如泄漏流作用强,并且尾缘开口与前缘开口开度的匹配对叶顶间隙泄漏损失有明显的影响。  相似文献   

7.
吸力面小翼对扩压叶栅间隙泄漏的影响   总被引:1,自引:0,他引:1  
采用数值模拟方法对利用吸力面小翼方式控制压气机叶栅间隙流动进行研究。结果表明,附加吸力面小翼可以降低叶顶泄漏流速,削弱泄漏涡强度,使得泄漏涡区损失降低。不同宽度吸力面小翼在不同间隙下部可以较好地减少叶尖泄漏,在叶顶间隙为3.3%叶高时,附加相对宽度为0.5的吸力面小翼可使损失降低4.7%。叶顶压差的降低及对泄漏涡结构的改变是吸力面小翼降低泄漏掺混损失的主要原因。  相似文献   

8.
本文针对高压涡轮动叶凹槽叶尖流动传热问题开展非定常数值模拟研究。结果表明,TBR模型Time Transformation方法适用于动叶叶尖非定常气热分析。压力侧泄漏流引起的卷吸涡在凹槽底部形成带状高换热系数区,机匣边界层流动使吸力侧肋顶靠近前缘区域形成局部高换热系数。随着叶尖凹槽深度增加,凹槽内流场低速区域扩大,卷吸涡尺寸也随之增大。相应地,凹槽底部的换热过程减弱,沿压力侧肋分布的带状高换热系数区域范围减小,其位置逐渐远离压力侧肋,并且在特定时刻呈现间断离散的分布特点。不同时刻,2%凹槽深度的叶尖中凹槽底部的平均换热系数相比3%凹槽深度的叶尖升高7.1%~13.5%,相比3.5%凹槽深度的叶尖升高9.6%~21.9%。  相似文献   

9.
扩压叶栅叶顶间隙流动结构研究   总被引:1,自引:0,他引:1  
本文对某扩压叶栅叶顶间隙流动结构进行了研究,通过三维数值仿真,对叶顶间隙流场中的旋涡结构构成、空间分布及相互作用关系进行了分析.研究采用Q判据识别流场中的涡,发现叶顶间隙气流的泄漏流动形成了叶尖分离涡、二次涡以及泄漏涡等旋涡结构,其空间位置及空间尺度具有明显差别。叶尖分离涡的堵塞作用对泄漏涡的强度、空间位置造成影响;在叶顶泄漏流动与泄漏涡的共同作用下形成了叶尖二次涡。涡系间存在的相互作用共同构成了叶顶间隙流场框架。  相似文献   

10.
单转子压气机设计状态和近失速状态出口三维紊流流场   总被引:6,自引:0,他引:6  
用单斜丝详细测量了单转子压气机设计状态和近失速状态转子出口的三维素流流场。结果表明,设计状态叶尖泄漏涡和端壁附面层的掺混是造成尖部流动损失、气流阻塞和亲流脉动的主要原因。近失速状态流动三维性和非定常性较强;尖部吸力面角区轴向速度最低、相对动能损失最大;吸力面附面层径向潜移、叶尖吸力面角区低能团周向潜移及其输运的低能物质在尖部通道中部与叶尖泄漏流、泄漏涡、刮削涡发生掺混,造成尖部大范围的高损失区;根部和尖部吸力面阻面层局部发生分离。  相似文献   

11.
本文通过改变90%叶高截面叶型的安装角和厚度分布获得了不同的加载形式,并采用数值模拟方法对比分析了加载形式对叶尖泄漏流动和损失的影响。结果表明,叶尖加载形式影响了泄漏流的流量和法向/流向速度差沿轴向的分布,进而影响泄漏流动损失。随着叶尖负荷向前缘移动,叶尖泄漏总流量增大,当泄漏量和动量差沿轴向分布相对均匀,当地峰值减小,叶中附近所占比重增加;在泄漏量与动量差共同作用下,泄漏涡卷起位置向上游移动,但与主流掺混强度减弱,损失减小;采用均匀加载和前加载形式能有效降低泄漏流与主流的动量差,减小泄漏损失,提高涡轮性能。  相似文献   

12.
叶尖小翼对扩压叶栅气动特性影响的数值研究   总被引:5,自引:0,他引:5  
通过在叶片顶端加装小翼来降低叶顶二次流的叶尖小翼技术在叶轮机械领域受到关注。本文对具有不同叶尖小翼方案的压气机叶栅进行了全三维数值模拟,并详细分析了叶尖小翼对叶顶间隙流场的影响.结果表明,合理选择叶尖小翼的安装位置及自身宽度可以在一定程度上降低叶顶泄漏损失,在叶顶吸力面侧加装宽度为5 mm的小翼可以较好的削弱泄漏流动的强度,减少泄漏涡卷吸起更多的吸力面/端壁角区的低能流体及较早地阻止上通道涡的形成和发展。  相似文献   

13.
本文通过低速平面叶栅风洞实验的方法,将轴向非均匀间隙与叶顶凹槽进行结合,分析了其在不同工况下的性能及流场结构。结果表明:非均匀间隙适用于凹槽叶顶,在各个方案中均能显著降低能量损失系数(最高8.9%),并提高通流流量(最高1.53%);攻角的增大导致端壁处泄漏涡低压区增大,并延迟了泄漏涡抬离壁面,继而在下游引发了高损失区的扩大;轴向非均匀间隙下出口气流欠偏转现象更加明显,而正攻角条件下的欠偏转现象有所减轻。  相似文献   

14.
叶尖泄漏是压气机中的典型流动,但其机理仍没有完全揭示。本文使用延迟脱落涡模拟方法对压气机转子的泄漏涡进行模拟计算,以便更好了解泄漏流动的运动过程。为了清楚地认识叶尖泄漏的流动结构,本文研究了三维流线、压力和涡量云图。从近堵点到近失速点,泄漏涡形成和失稳的位置都向前缘移动。泄漏流的瞬时流动和平均流动存在差异,据其可将泄漏涡的发展分为3个阶段。另外,泄漏涡的失稳会导致频谱中泄漏主频右侧的高频区域振幅增加。  相似文献   

15.
利用数值模拟的方法对跨声速压气机模拟分析。针对叶尖流道中因激波及叶尖泄漏涡等导致的复杂二次流动,利用叶尖周向抽吸槽改善跨声速压气机叶尖流动状态。其结果表明:在近失速工况下叶尖周向抽吸槽有效削弱了叶尖低能损失流动,在合理范围内大流量抽吸会使抽吸效果更好。  相似文献   

16.
串列转子尖部存在着前/后叶叶尖泄漏流以及前叶尾迹等流动,流动结构较为复杂,准确判断这几股流动之间的相互作用成为分析流场的关键。本文分别通过实验和数值模拟方法对基于北京航空航天大学低速大尺寸单级压气机试验台设计的一套超高负荷串列转子尖部流场进行了研究。研究结果表明:对于本文所研究的高负荷串列转子,无论是在设计点还是近失速点,前叶叶尖泄漏涡在前叶出口时都已经到达前叶压力面附近,随后紧贴后叶吸力面从喉道进入后叶通道,在喉道内顺压梯度的作用下,前叶叶尖泄漏涡的旋涡特性增强,并在后叶通道内将相对较弱的后叶叶尖泄漏涡吞并;相对于常规布局转子,由于在前后叶喉道顺压梯度的作用下,串列转子内叶尖泄漏涡的稳定发展阶段都有所延长,这有利于减小叶尖泄漏涡造成的转子尖部流动堵塞。  相似文献   

17.
跨音压气机中存在激波/边界层相互干涉、激波/叶尖泄漏涡相互干涉等复杂流动结构,为了实现高精度的数值模拟,精细的捕捉到激波以及叶尖泄漏涡附近的流动结构,从而探究其复杂的流动机理,本文发展了非结构网格自适应技术,其可以自动的加密关注流动特征附近的网格,从而实现对激波、叶尖泄漏涡及激波与其他流动现象相互作用的流动结构的精细捕捉。本文将网格自适应技术应用于RAE-2822翼型二维激波算例以及真实跨音速压气机Rotor-37算例的数值模拟中,计算结果表明网格自适应技术能自动的捕捉到激波、叶尖泄漏涡及其与其他流动现象相互干涉的精细流动结构。  相似文献   

18.
本文提出一种新型球底蜂窝组合叶顶结构,数值研究了其对涡轮叶栅叶顶间隙流场的影响,并探讨了底部球形结构相对几何深度对泄漏流动的影响规律。结果表明:蜂窝腔内形成旋涡改变间隙流场结构,球底蜂窝组合结构加强了该类旋涡,对泄漏流动具有更好的抑制效果;与平顶叶栅相比,蜂窝叶顶和球底蜂窝组合叶顶叶栅泄漏量分别减小了11.18%和15.13%,损失降低了8.17%和10.42%;另外,间隙泄漏量和损失均随球底蜂窝组合结构的球底几何深度呈抛物线变化,球底深度为1/6球径时,叶栅具有最小的泄漏量和损失。  相似文献   

19.
采用5因素5水平的正交实验方法,找到在不同尖速比下均具有较好功率放大效果的S型叶尖小翼结构,对其影响近尾迹流动与声辐射的特征进行了测试。发现该小翼可以打散从风轮叶尖脱落的叶尖涡结构,在测试方位面内形成多个涡量集中区域,而且使叶尖涡内高涡量区域减小,降低叶尖涡的强度。同时,该小翼还可以使叶尖附近的压力脉动衰减,高压力脉动区域缩小,降低声辐射的强度,有效降低近尾迹中的声压级,靠近风轮附近测点的最大声压级降幅超过10dB,在1倍风轮直径下游位置的声压级降幅为2~7 dB.对S型叶尖小翼影响近尾迹流动和声辐射的研究,为提高风力机性能和降噪途径的探索积累了经验.  相似文献   

20.
吸力面小翼对扩压叶栅旋涡结构的影响   总被引:2,自引:0,他引:2  
本文采用经过实验校核的数值模拟方法对某压气机动叶原始叶型和吸力面叶尖小翼叶型流道旋涡结构进行了详细分析.结果表明,原始叶栅流道中存在四个旋涡,即上通道涡、下通道涡、下集中脱落涡和叶顶泄漏涡。吸力面叶尖小翼的应用使得叶栅流道内的旋涡结构发生了变化,叶尖小翼抑制了叶顶泄漏涡的强度,从而使得上集中脱落涡得以出现,同时还使得叶顶泄漏涡的衍生涡被撕裂成两个衍生涡.正是由于叶尖小翼改变了叶栅流道内的旋涡结构,使叶栅流场的气动性能得到了改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号