首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
许军  姚绯  朱晨 《中国塑料》2007,21(4):13-19
通过反应共混制备了PP/PET/EPDM—g-GMA共混物。用扫描电镜和图像处理软件对共混物形貌进行定性和定量分析,用偏光显微镜观察共混物等温结晶形态,最后测量共混物的力学性能。结果表明:在PP/PET共混物中加入EPDM-g—GMA后,两相相容性改善,进一步加入成核剂后分散相尺寸更小、粒径分布更均匀;PP球晶随PET的混入而减小;在PP/PET体系中加入EPDM-g—GMA起到反应增容和橡胶增韧的协同效应,使缺口冲击强度由未加增容剂时的2.0kJ/m^2提高至6.6k.1/m^2,弹性模量较PP提高了38%;PP/PET共混物的拉伸强度随PET含量的增加下降,在相同PET含量的情况下,加入EPDM—g-GMA后,共混物的拉伸强度与未增容体系基本一致。  相似文献   

2.
均聚聚丙烯(PP)与EPDM、SBS、顺丁橡胶和无规丁苯橡胶共混体系力学性能实验结果表明,EPDM增韧效果最佳,SBS次之。在PP/EPDM二元共混体系中加入适量的HDPE,可改善冲击强度,若将HDPE/EPDM预混成母料后再与PP共混,增韧效果更好。  相似文献   

3.
研究了共混时间和5种共混方法对动态硫化EPDM(乙烯/N烯/二烯共聚物)/PP的结晶相态结构及力学性能的影响。结果表明,随着共混时间的延长。EPDM/PP体系的力学性能先变好后变差。当共混时间为5min时EPDM/PP体系的力学性能最佳;无论是采用哪种共混方法,均能形成完全硫化的弹性体相,但力学性能差别明显。  相似文献   

4.
采用机械共混方法对粉状聚丙烯(PP)进行了增韧增强研究,探讨了增韧剂、增强剂和有少量自制的固相甲基丙烯酸(MAA)接枝粉状聚丙烯(PP-g-MAA)作增容剂存在下对粉状PP共混体系力学性能的影响,用热重分析法考察了改性粉状PP的热性能。结果表明,(乙烯/丙烯/二烯)共聚物(EPDM)/高密度聚乙烯(HDPE)为复合增韧剂,具有协同作用,可显著提高共混物的冲击强度:PP-g-MAA能明显改善PP/玻纤两相的界面结合力;PP/EPDM/HDPE玻璃纤维共混体系可以获得理想的增韧增强效果。  相似文献   

5.
研究了EPDM/PP/HDPE动态硫化热塑性弹性体中三元乙丙橡胶(EPDM)和高密度聚乙烯(HDPE)对动态硫化热塑性弹性体的力学性能影响。结果表明:EPDM可以改变聚丙烯(PP)和HDPE结晶度,有利于应力的平均分布,使体系的硬度降低。HDPE作为第三相,可以改善PP与EPDM之间的相界面结构,增加体系的相容性。在EPDM/PP橡塑比较低时加入HDPE对体系力学性能影响更明显。  相似文献   

6.
高模量弹性体对PP结晶行为及力学性能的影响   总被引:2,自引:0,他引:2  
应用DSC和力学性能测试研究了PP/OTE、PP/EPDM共混物的结晶行为和它们的增韧作用。结果表明 ,烯烃类热塑性弹性体 (以下简称OTE)对PP的结晶性能无明显影响 ,EPDM对PP成核速率有促进作用。PP/OTE在赋予PP较好低温韧性的同时 ,使共混物的刚性得以适度兼顾 ,且易于加工。PP/OTE共混体系的综合性能优于PP/EPDM共混物  相似文献   

7.
PP/PA6/EPDM-g-GMA合金性能的研究   总被引:4,自引:0,他引:4  
许军  朱晨  王辉 《塑料工业》2006,34(6):15-18,45
在聚丙烯(PP)中加入10%~40%(质量分数)的PA6及反应增容剂EPDM—g—GMA对PP进行共混改性.观察和分析了共混合金的形貌及等温结晶形态,测试了合金的力学性能。结果表明:PP/PA6体系中加入EPDM—g—GMA后相容性改善;PP球晶尺寸随PA6的混入而减小,且PA6结晶相分布PP晶区内和PP晶区之问,加入EPDM—g—GMA后PA6结晶相尺寸减小;PP/队6体系中加入EPDM—g—GMA可起到反应增容和橡胶增韧的协同效应,使材料的韧性比纯PP明显提高;PP/PA6体系的杨氏模量高于PP,加入EPDM-g-GMA后杨氏模量比未增容体系提高不显著;PP/PA6体系的屈服强度随PA6用量的增加而下降,加入EPDM—g-GMA后屈服强度高于未增容体系但略低于PP。  相似文献   

8.
研究了PET/TLCP原位共混体系的热性能、流变性能、力学性能。结果表明,在PET中加入少量TLCP可起到结晶成核剂的作用,提高PET基体的结晶性能,并使共混物的熔体粘度降低;催化剂二月桂酸二丁基锡的加入,可增加共混物的熔体粘度,降低分散相的尺寸,增强共混物两相间的界面粘接,从而提高PET/TLCP共混体系的力学性能。  相似文献   

9.
PP/PE复合基材及其增韧研究   总被引:2,自引:0,他引:2  
研究了PP/PE共混复合基材的力学性能和形态结构与组成配比的关系.结果表明,PP/HDPE/EPDM和PP/LLDPE共混体系可以制成具有高抗冲击性能的复合基材,且其他力学性能均衡,加工性能良好。弹性体SRS对复合基材的力学性能及形态有较大影响.实验结果表明,LLDPE具有分割、插入、细化PP球晶的作用,并与PP有较好的相容性;EPDM对PP/HDPE共混体系具有良好的增容效果。  相似文献   

10.
采用熔融共混法制备聚丙烯(PP)/三元乙丙橡胶(EPDM)/滑石粉(Tacl)/(高密度聚乙烯)HDPE共混材料。研究了HDPE对改性PP共混体系力学性能的影响及其原因。结果表明,在PP/EP-DM/Tacl/HDPE共混体系中,HDPE的添加量存在一个饱和值,在这一添加量的前后,韧性和刚性指标曲线有波峰或波谷;不同牌号的2种HDPE,熔融指数高者增韧效果好。  相似文献   

11.
In this work, the morphologies of polypropylene (PP)/ethylene‐propylene‐diene (EPDM) rubber/high density polyethylene (HDPE) 70/20/10 blends were studied and compared with the predictions of the spreading coefficient and minimum free energy models. The interfacial tension of PP/HDPE, PP/EPDM, and HDPE/EPDM blends were obtained by fitting the experimental dynamic storage modulus data to Palierne's theory. The prediction results showed core‐shell morphology (core of HDPE and shell of EPDM) in PP matrix. The PP/EPDM/HDPE blends were respectively prepared by direct extrusion and lateral injection method. Core‐shell morphology (core of HDPE and shell of EPDM) could be obtained with direct extrusion corresponding to the predicted morphology. The morphology of PP/EPDM/HDPE blends could be effectively controlled by lateral injection method. For PP/EPDM/HDPE blend prepared by lateral injection method, HDPE and EPDM phase were dispersed independently in PP matrix. It was found that the different morphology of PP/EPDM/HDPE blends prepared by two methods showed different rheological behavior. When the core‐shell morphology (core of HDPE and shell of EPDM) appeared, the EPDM shell could confine the deformation of HDPE core significantly, so the interfacial energy contribution of dispersed phase on the storage modulus of blends would be weaken in the low frequency region. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
用于交通信号标识制品的聚丙烯合金的研制   总被引:3,自引:0,他引:3  
杨其  李光宪 《塑料工业》2002,30(3):30-33
以PP为基体,加入EPDM和HDPE,采用动态硫化技术,制得了可用于交通信号标识制品的PP合金,并分别对材料的力学性能、热性能和加工流动性进行了评估。实验表明,PP/HDPE/EPDM能很好地改善PP的低温脆性,是制造交通信号标识制品的理想材料。  相似文献   

13.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

14.
The rheological properties and crystalline structure of the polyolefin ternary blends of EPDM/polypropylene/high density polyethylene were studied. Blends were prepared in a laboratory internal mixer by two different methods. In blend–cure process, blending and curing were performed simultaneously and EPDM was cured by dicumyl peroxide (DCP) in the presence of PP/HDPE under shear. The cure–blend was to cure EPDM alone first under shear (dynamic curing) and then mix the cured EPDM with PP and HDPE. The effect of DCP concentration, intensity of the shear mixing, and the rubber/plastic composition were studied using capillary rheometer and X-ray diffractometer. The PP-rich ternary blends showed the effect of the mechanooxidative degradation of PP by shear and peroxide. The melt viscosity increased with increasing DCP concentration in blends of EPDM-rich compositions. X-ray diffraction studies revealed that the inclusion of 25 wt % of linear EPDM in the PP/HDPE mixture for the PP-rich ternary blends changed the crystal structure of polypropylene component in the ternary blends. However, the dynamic curing did not alter the crystal structure of PP or HDPE in the blends.  相似文献   

15.
The mechanical properties of high-density polyethylene (HDPE)-rich i-PP/HDPE blends were studied. Two grades of HDPE were investigated, one with a melt viscosity close to that of the polypropylene (PP) and the other having a much lower melt viscosity. Compatibilization of the 10/90 i-PP/HDPE blend with three copolymers (an ethylene/propylene/diene [EPDM] copolymer and two ethylene/vinylacetate [EVA] copolymers, differing in their VA content) was also investigated. Blends of PP with the low melt viscosity HDPE displayed poor mechanical properties. It was not possible to improve these properties sufficiently with EPDM or EVA. In the case where viscosity matching was achieved between PP and HDPE, addition of i-PP (up to 30%) to HDPE resulted in a large drop in the impact strength of the blends, compared to that of the neat HDPE. A large drop (>50%) was also observed in the ultimate tensile elongation. However, the flexural modulus, yield stress, and ultimate tensile strength all increased with the introduction of i-PP into HDPE. Modification of these blends with an EPDM resulted in the return of all properties to values very close to those of the neat HDPE. The ultimate tensile elongation of the EPDM-modified i-PP/HDPE blend even exceeded that of the virgin HDPE. It was also found that although EVAs can be used to compatibilize these blends these additives were not as effective as was the EPDM. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The mechanical properties and crystal morphological structures of dynamically photocrosslinked polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) blends have been studied by mechanical tests, wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Dynamically photocrosslinking of PP/EPDM blends can improve the mechanical propertiess considerably, especially the notched Izod impact strength at low temperature. Data obtained from mechanical tests show that the notched Izod impact strength of a dynamically photocrosslinked sample with 30% EPDM at ?20°C is about six times that of an uncrosslinked sample with the same EPDM component. The results from the WAXD, SEM, and DSC measurements reveal the enhanced mechanism of impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (i) the β‐type crystal structure of PP is formed and the interplanar distance of β‐type crystal increases slightly with an increase in the EPDM component; (ii) the droplet size of the EPDM phase in the photocrosslinked PP/EPDM blends is obviously reduced and the droplet number is increased with an increase in the EPDM component during the dynamical photocrosslinking process; (iii) the graft copolymer of PP‐g‐EPDM is formed at the interface between PP and EPDM components. All the above changes from the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of PP/EPDM blends at low temperatures.  相似文献   

17.
In this paper, the compatibilization of polypropylene (PP)/high-density polyethylene (HDPE) blend was studied through morphological and interfacial tension analysis. Three types of compatibilizers were tested: ethylene-propylene-diene copolymer (EPDM), ethylene-vinylacetate copolymer (EVA) and styrene-ethylene/butylene-styrene triblock copolymer (SEBS). The morphology of the blends was studied by scanning electron microscopy. The interfacial tension between the components of the blends was evaluated using small amplitude oscillatory shear analysis. Emulsion curves relating the average radius of the dispersed phase and the interfacial tension to the compatibilizer concentration added to the blend were obtained. It was shown that EPDM was more efficient as an emulsifier for PP/HDPE blend than EVA or SEBS. The relative role of interfacial tension reduction and coalescence reduction to particle size reduction was also addressed. It was observed that the role of coalescence reduction is small, mainly for PP/HDPE (90/10) blends compatibilized by EPDM, EVA or SEBS. The results indicated that the role of coalescence reduction to particle size reduction is lower for blends for which interfacial tension between its components is low at compatibilizer saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号