首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Ni基合金激光熔覆层组织特征及凝固过程的研究   总被引:14,自引:3,他引:11  
采用自动送粉方法,在45钢表面激光熔覆Ni基合金粉末,较为系统地研究了扫描速度对激光熔覆层显微组织特征的影响。实验结果表明:Ni基合金粉末激光熔覆层显微组织由枝晶及块状(或针状)共晶组织构成,共晶碳化物的形态由化学成分确定;结合界面不存在白亮带,为细小亚共晶组织;离结合界面距离的增加,熔覆层组织逐渐变细,显微组织表现出明显不均匀性,提高激光扫描速度,明显细化了组织邮组织显微硬度。改善了熔覆层局部组  相似文献   

2.
以钴基合金粉作熔覆材料,利用激光熔覆技术在42CrMo基体表面制备高性能熔覆层。使用光学显微镜观察熔覆层的宏观形貌以及显微组织,采用显微硬度计、摩擦磨损试验仪测量基体与熔覆层的显微硬度及摩擦因数曲线并分析了其磨损机理。结果表明,熔覆层中的组织类型为平面晶、胞状晶和柱状晶,组织形态呈梯度分布。熔覆层平均硬度达到650 HV0.3,是基体平均硬度的2.7倍,其摩擦因数为0.275左右,比基体的摩擦因数小0.075左右。  相似文献   

3.
韩基泰  武美萍  崔宸 《金属热处理》2020,45(11):214-217
利用摩擦磨损试验探究不同激光功率下42CrMo钢激光熔覆层的耐磨性,采用SEM和OM观察了试样摩擦磨损前后的熔覆层组织形貌。结果表明:42CrMo钢基体的摩擦因数较大,且在该摩擦磨损后出现了严重的脆性剥落现象,激光熔覆层可以提升42CrMo钢的耐磨损性能;当激光功率为1600 W时,摩擦因数可降低至0.28,熔覆层表面SEM形貌较为光滑,耐磨性优异,熔覆层组织中的晶粒细化均匀,主要表现为细小的等轴晶,组织较为致密,从而提高了熔覆层的耐磨损性能。  相似文献   

4.
以TiN和NiCrBSi合金混合粉末为原料,采用激光熔覆技术在TC4合金表面制备出TiN颗粒增强Ni基合金涂层。利用XRD,SEM和TEM等分析了激光熔覆层的相组成及微观组织,并测试了激光熔覆层的显微硬度和磨损性能。结果表明,激光熔覆层由熔覆区和稀释区2个区域组成,熔覆区的组织是在γ-Ni树枝晶和γ-Ni+Ni3B层片状共晶的基体上均匀地分布着TiN颗粒和针状尬3C6相,显微硬度在9000MPa-12000MPa之间.稀释区为基底TC4合金和熔覆材料Ni基合金的混合凝固区,呈胞状晶和树枝晶形态。激光熔覆层中存在颗粒强化、细晶强化和固溶强化等多种强化作用,大幅度地提高了TC4合金的耐磨性能。  相似文献   

5.
为了提高矿山机械零部件的耐磨性能及使用性能,采用激光熔覆方法在45#钢基体上制备了Ni基合金与WC混合粉末的复合涂层,研究了熔覆层的物相组成、WC颗粒在Ni基合金涂层中的分布,以及加入50%WC颗粒后Ni基合金涂层的裂纹敏感性、显微组织、成分及硬度。结果表明,合理的工艺参数使WC颗粒分布均匀,与基体结合牢固,并保持原始的形状;熔覆层内没有裂纹产生;熔覆层与基体之间形成了冶金结合;熔合线附近由亚共晶组织(初晶的富Ni奥氏体γ-Ni与共晶组织)构成;熔覆层中上部由过共晶组织(初晶的碳化钨与共晶组织)构成,初晶碳化钨的形态有珊瑚状、等轴晶状、柱状及交互结晶状等;激光熔覆层硬度是45#钢基体的5倍以上。  相似文献   

6.
在Ni60A粉末中添加不同含量的Cr3C2-NiCr材料,采用感应熔覆方法在45号钢基体上制备熔覆层,研究Cr3C2-NiCr含量对熔覆层的成型性、显微组织、硬度与冲蚀磨损性能的影响规律.结果表明:当Cr3C2-NiCr含量小于70%时成型性较好;熔覆层与基体可形成良好结合,熔覆层组织呈现树枝晶的形貌特征;当Cr3C2-NiCr含量为40%时,熔覆层的硬度值最大(达580 HV)、冲蚀速率最低(为2.62 mg/mm2.min).  相似文献   

7.
熔覆层中的裂纹是激光熔覆技术应用的主要障碍。为了提高熔覆层的性能,抑制裂纹扩展,采用CO2激光器在45钢表面激光熔覆了Ni25合金粉末,然后采用不同工艺参数对熔覆层进行激光重熔处理研究。实验结果表明,激光重熔能够减少熔覆层中的裂纹和气孔,使熔覆层表面变的平整,颗粒状组织消失。较慢的激光扫描速度更有利于降低熔覆层的残余应力,减少缺陷。激光重熔后材料表面的显微硬度有所降低。研究结果对激光熔覆技术的应用具有实用价值。  相似文献   

8.
采用同轴送粉式激光熔覆工艺对Ni基合金粉末进行单道单层、单道多层及多道多层熔覆成形实验.结果表明:所形成的熔覆层与基体为冶金结合;内部组织由大量的枝晶和等轴晶构成且组织均匀、致密;熔覆层硬度最高达771HV0.2,为基体材料硬度的3~4倍.耐磨性显著提高;熔覆层内部无气孔出现,局部存在少量微观裂纹.  相似文献   

9.
采用HGL-6000型横流CO2激光器在316L不锈钢表面制备Ni基WC熔覆层,采用金相显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS)观察熔覆层组织并进行成分分析,考查了不同激光功率对Ni基WC熔覆层组织的影响。试验结果表明,激光功率在2500~3500 W范围内,随功率的增加,熔覆层的组织变细,激光功率为4000 W时,熔覆层组织比功率为3500 W的组织粗大,且结合处出现了过烧现象;熔覆层晶内出现了Fe、Ni元素的富集,而晶界处则产生了Cr、W元素的偏聚。  相似文献   

10.
以镍粉和WC粉为原料,采用激光熔覆法在310S奥氏体不锈钢表面制备了镍基-WC复合涂层,研究了激光熔覆层的显微形貌、物相组成和耐磨性能,并分析了复合涂层的作用机理。结果表明,激光熔覆层致密,无气孔或者其它显微缺陷,熔覆层与基材冶金结合良好;Ni基-20%WC激光熔覆层的物相为:Ni_3Cr_2、Ni_(17)W_3、Cr_4Ni_(15)W、Fe_6W_6C、Mo_6Ni_6C、W3_C和WC;不同添加量的激光熔覆层的磨损失重均小于不锈钢基材,随着WC含量的增加,熔覆层的磨损失重量呈现逐渐降低趋势。  相似文献   

11.
为探究Cr元素对高熵合金涂层组织结构和性能的影响,在45钢基体上用激光熔覆方法制备了FeCoCrxNiB高熵合金涂层,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度和耐磨测试等方法研究了Cr含量对FeCoCrxNiB激光熔覆高熵合金涂层组织结构、硬度和耐磨性能的影响。结果表明:熔覆态高熵合金的组织均由先共晶M2B相和共晶组织(面心立方结构相(FCC)+M2B相)组成。随着Cr含量的增加,共晶组织含量增多,M2B相减少,先共晶硼化物形态呈现不规则颗粒状到树枝状再到条块状的变化,共晶组织形貌由蜂窝状向片层状转变。涂层平均硬度随着Cr含量增加逐渐降低,FeCoCr0.5NiB涂层平均硬度最高为860HV0.2。涂层的耐磨性能与硬度呈正相关关系,即FeCoCr0.5NiB涂层耐磨性最高,FeCoCr3NiB涂层耐磨性最低。  相似文献   

12.
激光制备镍基纳米WC/Co复合涂层的耐磨性研究   总被引:2,自引:0,他引:2  
对不锈钢表面激光涂覆Ni基纳米WC/Co复合涂层的耐磨性进行了研究。结果表明,与热喷涂及喷焊Ni基WC/Co涂层相比,激光涂覆Ni基纳米WC/Co复合涂层的相对耐磨性明显较高。在选定的试验条件下,激光涂覆层的相对磨损体积分别为热喷涂及喷焊层的6.91%及15.46%,其原因是激光快速涂覆工艺及纳米WC/Co综合作用的结果。  相似文献   

13.
高玉龙  马国梁  高晓华  崔洪芝 《表面技术》2022,51(9):351-358, 370
目的 针对高铁制动盘等高速强力磨损的关键件,设计激光熔覆CoCrNiMnTix高熵合金涂层,提高表面的硬度和耐磨性。方法 采用激光熔覆技术在Q235钢表面制备CoCrNiMnTix高熵合金涂层,利用XRD和SEM对涂层微观组织进行表征,通过显微硬度计和纳米压痕仪测试涂层硬度,运用摩擦磨损试验机和三维形貌仪研究涂层的摩擦磨损性能。结果 在激光熔覆CoCrNiMnTix涂层中,随着Ti含量的增加,涂层物相由单一的FCC相转变为FCC+Laves相。由于固溶强化以及Laves相含量增多,涂层的显微硬度不断提高,CoCrMnNiTi硬度达到523HV0.1,最高纳米硬度达到6.91 GPa。CoCrNiMnTix系涂层的弹性模量大小相近。随着Ti含量的增加,涂层的耐磨性呈现升高趋势,当Ti的摩尔分数增加至0.75时,涂层具有最好的耐磨性,但进一步增加Ti含量时,由于脆硬性的Laves相逐渐增多,磨损形式由低Ti含量时的粘着磨损逐渐转变为高Ti含量时的磨粒磨损,使涂层耐磨性能下降。结论 激光熔覆CoCrMnNiTix涂层可以显著提高基体的耐磨性,Ti的摩尔分数为0.75时,在FCC基体中形成了少量Laves相,既提高硬度,又实现强韧配合,涂层表现出最佳的耐磨损性能。  相似文献   

14.
激光熔覆镍基合金的耐磨耐蚀性研究   总被引:4,自引:1,他引:4  
用激光熔覆和火焰重熔方法在 35CrMo调质钢表面分别熔覆上一层Ni45、Ni35合金。用电化学方法和应力腐蚀试验测定了熔覆层耐蚀性。试验结果表明 ,激光熔覆层组织的耐磨性和抗腐蚀性较火焰重熔后组织的有很大提高。其中激光熔覆Ni45粉末的熔覆层组织的耐磨、耐蚀性最好  相似文献   

15.
目的 研究超声振动对高熵合金涂层的裂纹抑制机理与力学性能影响。方法 采用自主设计的超声振动平台开展试验。使用激光共聚焦显微镜观察高熵合金涂层的截面形貌,对比超声添加前后裂纹的数量以及分布情况。采用扫描电镜、X射线衍射仪等测试设备,探究添加超声前后涂层的微观组织转变、元素分布趋势与晶粒尺寸等。借助显微硬度仪与往复摩擦磨损试验机研究涂层的显微硬度与耐磨性。结果 超声振动作用下,熔池的润湿角发生变化,截面由半圆状变为椭圆状。超声振动显著细化涂层的晶粒,破碎的柱状晶增加了凝固晶核的数量,同时促进了FCC相在晶界处的析出。FCC析出相形成“网状”结构,增强了晶界处吸收应力的能力,有助于抑制涂层中裂纹的扩展。涂层显微硬度由503HV0.5提升至526HV0.5,室温摩擦因数由0.669下降至0.586,摩擦曲线更加平稳。添加超声振动后,涂层的磨损机制为磨粒磨损与氧化磨损。结论 超声振动产生的空化效应与声流效应减小了熔池的温度梯度,细化了晶粒,抑制了裂纹在晶界处扩展。添加超声振动后,涂层的力学性能与摩擦性能得到提升。  相似文献   

16.
目的 通过高速激光熔覆技术改善高压柱塞镍基合金涂层的组织,并提高涂层的耐磨性能。方法 分别采用常规激光熔覆(P=1.8 kW,vs=500 mm/min)和高速激光熔覆(P=1.8 kW,vs=7000 mm/min),在高压柱塞45#钢基材上制备了SD-Ni45耐磨涂层,分别测试了两种涂层的稀释率、微观结构、硬度,并通过可控气氛微型摩擦磨损试验仪和扫描电镜,对熔覆层的耐磨性进行了分析。结果 高速激光熔覆层的稀释率约为常规激光熔覆层的68%。高速激光熔覆层的物相与常规激光熔覆层的物相基本相同,并无新的物相析出,主要包括γ-(Ni,Fe)固溶体、Cr-Ni-Fe固溶体、Cr23C6以及少量的WC等强化相,但高速激光熔覆层的整体组织更加细小致密,硬质相颗粒分布更为均匀。高速激光熔覆层与常规激光熔覆层的平均显微硬度分别为600HV0.1、460HV0.1,高速激光熔覆层与常规激光熔覆层的磨痕宽度分别为210、315 μm,磨损量分别为(7.4±0.8)、(4.4±0.6) mg,高速激光熔覆层的耐磨性相对于常规激光熔覆层提高了约1.7倍。结论 高速激光熔覆技术可以有效地改善常规激光熔覆层裂纹敏感性大、稀释率较高、涂层较厚等缺陷,高速激光熔覆层的硬度和耐磨性较普通激光熔覆层有所提高。  相似文献   

17.
研究Al2O3对激光熔覆镍基涂层耐磨性的影响。通过显微组织的观察,硬度测试和耐磨性测试,结果表明,添加Al2O3具有改变显微组织和激光熔覆层性能的作用。显微组织得到了细化,耐磨性得到显著的提高。  相似文献   

18.
激光熔覆Cu/WCP复合涂层   总被引:6,自引:1,他引:6       下载免费PDF全文
采用激光熔覆表面改性方法,在45号钢基体上表面熔覆Cu/WCp复合涂层。试验研究了WC含量对熔覆复合涂层的组织特点和耐摩擦磨损性能的影响规律。研究结果表明,通过调整WC的加入量可获得α-Cu固溶体+WC双相组织,当WC的加入量超过30%时,熔覆层中出现小圆点状的WC颗粒,表明WC有一定程度的熔化和熔解;Cu/WCp复合熔覆层与基体金属之间存在过渡区,其组织为钢基体+WC混合组织。采用40Cr磨轮对Cu/WCp熔覆层进行摩擦磨损试验,结果表明,WC加入量为10%时,摩擦系数与磨损量最小;采用硬质合金磨轮进行磨损试验,当WC加入量为30%时,摩擦系数最小,而加入量为10%,磨损量较小。  相似文献   

19.
目的 提高高铁制动盘用24CrNiMo铸钢的耐磨性和高温性能。方法 在24CrNiMo铸钢表面,通过超高速激光熔覆技术,制备Ni625/碳化钨(WC)复合涂层,并设计多层梯度熔覆,使得WC颗粒在涂层中呈均匀分布。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析涂层的物相组成、微观组织结构和元素分布。分别采用显微硬度计、摩擦磨损试验机、三维形貌仪等测试涂层的硬度、室温及600℃的摩擦系数和耐磨性,分析涂层的摩擦磨损机理。通过同步热分析仪(TGA-DSC)测试涂层的抗高温氧化性能和组织的高温稳定性能。结果 涂层主要由γ-Ni固溶体、WC以及含W增强相W2C和M23C6等组成。WC分布较为均匀,涂层平均显微硬度达440HV0.2~610HV0.2,是基体硬度的1.25~1.7倍。在室温条件下,体积磨损率仅为基体24CrNiMo铸钢的4.2%~20.8%,摩擦系数略低于基体;在600℃条件下,体积磨损率为基体24CrNiMo铸钢的80.1%~180.8%,摩擦系数高于基体,且稳定性好,熔覆涂层显著提高了24CrNiMo铸钢基体的耐磨性。磨痕分析表明,涂层在室...  相似文献   

20.
激光熔覆Cu-TiB2复合材料涂层及其耐磨性   总被引:5,自引:0,他引:5  
采用500W YAG固体激光器,在纯铜表面成功地原位合成了Cu-TiB2复合材料层,测定了Cu-TiB2原位复合材料熔覆层的显微硬度,研究了熔覆层的磨损行为。结果表明,激光熔覆复合材料层组织完好,TiB2颗粒细小均匀,涂层与基体呈较好地冶金结合;熔覆层表面的显微硬度达480-580HV,耐磨性是纯铜的15~20倍;在保证界面良好的基础上,光斑直径一定,硬度及耐磨性随扫描速度的增大、激光功率的减小而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号