首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
利用Leggett—Williams不动点定理,研究了二阶时滞微分方程边值问题 {y"(t)+f(t,y(t-τ))=0,0〈t〈2π; y(t)=0,-τ≤t≤0; y(0)=y(2π) 正解的存在性.其中0〈r〈π/2为一常数.我们先建立了该问题至少存在两个正解的充分条件.接着给出其至少存在三个正解的存在定理.  相似文献   

2.
1.IntroductionTheexistenceanduniquenessofsolutionsofdelaydifferentialequationsinaBanachspacehavebeenstudiedbymanyauthors(see[1--4]).Inthispaper,weshallapplythefixedpoillttheoremstoinvestigatetheexistenceofpositivesolutionsofnonlinearneutraldifferentialdifferenceequationsinaBanachspace.LetRbethefieldofrealnumbers,andletR ={tERIt20},to>0,J=[to, co)'ConsiderthenonlinearneutraldifferentialdifferenceequationinaBanachspaceE.mI(x(t)~Zci(t)x(t~ri))' ZPj(t)fj(x(t~D))=0,(1)i=1j=1wherefiEC[P,PI,f…  相似文献   

3.
    
In this paper, by using the Avery-Peterson fixed point theorem, we establish the existence result of at least three positive solutions of boundary value problem of nonlinear differential equation with Riemann-Liouville''s fractional order derivative. An example illustrating our main result is given. Our results complements and extends previous work in the area of boundary value problems of nonlinear fractional differential equations.  相似文献   

4.
利用混合单调算子的不动点定理,讨论了一类二阶脉冲微分方程两点边值问题,得到了存在唯一正解的充分条件,此外给出了相应的例子.  相似文献   

5.
In this paper, we investigate the existence and multiplicity of positive solutions for nonlinear fractional differential equation boundary value problem:
  相似文献   

6.
In our paper, by employing Krasnoselskii fixed point theorem, we investigate the existence of multiple positive periodic solutions for functional differential equations
  相似文献   

7.
利用锥上的Krasnoselskii's不动点定理的推广定理,讨论了一类边值问题,给出了相应依赖于一阶导数的非线性n阶m点边值问题至少一个正解的存在性.对于n阶m点边值问题,给出了相应的Green函数,证明了在非线性项f满足一定的增长条件下至少存在1个正解.并且给出了一个例子来说明所获得的结果.  相似文献   

8.
9.
10.
This paper is concerned with solutions of a functional differential equation.Using Krasnoselskii's fixed point theorem,the solutions can be obtained from periodic solutions of a companion equation.  相似文献   

11.
12.
Positive Periodic Solution for a Nonautonomous Delay Differential Equation   总被引:6,自引:0,他引:6  
In this paper, by using the Krasnoselskii fixed point theorem, we study the existence of one or multiple positive periodic solutions of a nonautonomous delay differential equation. We also give some examples to demonstrate our results.  相似文献   

13.
    
In this paper, we study the existence and uniqueness solutions of a fractional differential equation with multi-point boundary value problems. By using the fixed point theorems, some new results are established and two examples are given to demonstrate the application of main results.  相似文献   

14.
    
In this article, we study a class of fractional differential equations with resonant boundary value conditions. Some sufficient conditions for the existence of positive solutions are considered by means of the spectral theory of linear operator and the fixed point index theory.  相似文献   

15.
In this paper, we investigate the existence of positive solutions of singular super-linear (or sub-linear) integral boundary value problems for fractional differential equation involving Caputo fractional derivative. Necessary and sufficient conditions for the existence of C3[0, 1] positive solutions are given by means of the fixed point theorems on cones. Our nonlinearity f(tx) may be singular at t = 0 and/or t = 1.  相似文献   

16.
一类次线性分数微分方程的正解存在性   总被引:2,自引:0,他引:2  
证明了一类非线性项受幂函数控制的次线性分数微分方程的正解存在性.主要方法是锥拉伸与锥压缩型的Krasnosel’skii不动点定理的局部应用.我们的结论表明该方程可以具有一个正解,只要非线性项在某个有界集上的“高度”是适当的.  相似文献   

17.
考虑如下一类二阶中立型泛函微分方程的周期解:u″(t)-cu″(t-δ)+a(t)u(t)=λf(t,u(t-τ(t))),其中,λ>0为参数,c和δ为常数.通过应用Krasnoselskii锥不动点定理及一些分析技巧给出了这类方程周期正解的存在性非存在性和多解性.  相似文献   

18.
非自治时滞微分方程正周期解的存在性   总被引:2,自引:1,他引:1  
应用Krasnoselskii锥映射不动点定理,研究了具一般时滞非线性非自治Logistic方程的ω-周期解的存在性,获得了存在正周期解的充分条件.  相似文献   

19.
郑兆岳  王奇 《应用数学》2013,26(1):198-204
本文考虑一类具参数的非线性中立泛函微分方程,利用Leggett-Williams不动点定理得到该方程三个反周期解的存在充分条件.  相似文献   

20.
带有双参数的脉冲泛函微分方程正周期解的存在性   总被引:1,自引:1,他引:1  
考虑一类带有双参数的脉冲泛函微分方程,利用锥上不动点定理,得到了方程存在正周期解的若干充分条件,推广和改进了相关文献中的某些结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号