首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
用三原子模型的准经典轨线方法研究了Cl与C2H6(v=0,j)的反应.计算结果表明,反应产物HCl的角度分布基本上为各向同性,其振转分布处于基态,与实验结果相一致,对反应轨线的研究表明,该反应为一直接反应.而且反应碰撞在低及高的碰撞参数下的机理不一样.在低碰撞参数下反应碰撞是直接完成的,产物HCl以向后散射为主,转动基本上是冷的,但比高碰撞参数下的热.在高的碰撞参数下则生成短寿命的碰撞复合物,产物HCl以向前散射为主,转动较冷.  相似文献   

2.
CH4+O(3P)→CH3+OH反应的准经典轨线研究   总被引:1,自引:0,他引:1  
用准经典轨线方法研究了O(3P)与CH4的反应,计算结果表明,CH4(υ=0,j=0)与O(3P)的反应在低及高的碰撞参数下都是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,基本上处于振转基态.CH4(υ=1,j=1)与O(3P)的反应在低及高的碰撞参数下反应机理不一样。在低碰撞参数下是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,主要处于振动基态,转动基本上是冷的,但比高碰撞参数下的热.在高的碰撞参数下则生成短寿命的碰撞复合物,产物OH以向前散射为主,表现出明显的周边动力学反应的特征,主要处于振动激发态(υ=1),但转动仍然是较冷的。  相似文献   

3.
用同步辐射对(C2H3Cl)2分子团簇进行了光电离研究,发现该团簇内部发生了离子-分子化学反应,生成了十分稳定的反应产物C4H5Cl^+,不再是varderWaals弱键络合物,本文对反主尖机理进行了初步探讨。  相似文献   

4.
H+ClF体系的准经典轨线研究   总被引:1,自引:1,他引:0  
在从头算的基础上利用遗传算法拟合得到的LEPS型势能面对H+CIF体系进行了准经典轨线研究主要研究了相对平动能,转动激发态对反应的影响及产物的振、转能态分布和通道竞争,并得到了实验定性相符的结果,动态计算的结果则支持了前人关于生成HF通道存在着直接型和迁移型两种机理的假设。  相似文献   

5.
考察了在AlEtCl2/t-BuCl引发体系作用下的α-蒎烯阳离子聚合行为.结果表明,t-BuCl与AlEtCl2复合后,由于生成(CH3)C正离子而使引发活性增大.但t-BuCl的引人对产物分子量及其分布影响不大,产物主要由二、三聚体组成.聚合过程的动力学研究表明,α-蒎烯在进行阳离子聚合时容易发生链终止反应而导致单体转化率和产物分子量较低.α-蒎烯在聚合反应的同时伴随着异构化反应,用制备GPC分离出异构化产物,然后经1HNMR测定其结构.  相似文献   

6.
采用自洽场分子轨道UHF/6-31G**从头算法,研究了1,2-C4H6→2-C4H6异构化反应机理,优化了基态势能面上反应物,过渡态,中间体和产物的几何构型,并对各驻点能量进行了零点能校准。结果表明该反应经历了一个1-甲基环丙烯生产产物比较两步氢迁移反应历程更易发生。  相似文献   

7.
用阶跃过渡应答技术研究了乙烷氧化脱氢反应的反应物C2H6,O2,产物C2H4和主要副产物CO2在MoO3-V2O5/Al2O3催化剂上的吸附行为。结果表明:C2H6和C2H4在该催化剂上不吸附;氧为慢吸附、不可逆吸附;CO2为可逆吸附,吸附量较小。并发现在无氧的条件下,乙烷能与催化剂表面上的晶格氧反应生成乙烯。这些结果对乙烷氧化脱氢反应机理的探讨有重要意义。  相似文献   

8.
新型高选择性芳环溴化剂   总被引:1,自引:0,他引:1  
苄基三甲基三溴化铵是新型高选择性的芳环溴化剂。在CH2Cl2-CH3OH或CH3COOOH-ZnCl2中,它与酚,芳胺,酰胺,芳醚,芳烃及芳杂环化合物等反应,选择性得到对应的单,双或三溴化产物。  相似文献   

9.
H+Cl_2→HCl+Cl体系反应几率的量子动力学计算   总被引:1,自引:1,他引:0       下载免费PDF全文
利用含时波包动力学方法在GHNS势能面上计算了总角动量J=0时H+Cl2体系初态确定的累积反应几率,讨论了平动能、Cl2振动和转动激发对反应几率的影响;并且讨论了H+Cl2体系的波包运动特征.在一定的平动能范围内,Cl2的振动激发不利于反应的进行;而Cl2的转动激发特别是第一转动激发能够加快反应.这些结论和反应是早势垒反应的事实是一致的.由于Cl2是由两个较重的原子组成的,振动和转动态能级密集;同时由于是早势垒反应,能垒较低,波包在运动过程中在两侧的势垒壁之间发生多次反射致使波包发生很大范围内的干涉,需要较多的网格点才能正确地描述体系的波函数.这两个因素使得此体系的计算量较一般三原子体系要大得多.  相似文献   

10.
用量子化学从头计算方法在MP2/6-31G(g)水平上研究了CX2(X=H,F,Cl)与甲乙醚的C-H键插入反应,在甲乙醚的3个不同的C-H键(即甲基中a′-C-H键,乙基中a-C-H键和β-C-H键)上,反应势垒分别为123.8,32.5,157.3kJ/mol(X=Cl)和254.3,130.0.304.2kJ/mol(X=F)。亚甲基与毗邻氧原子的各C-H键插入反应没有势垒,与乙基中β-C-H键插入势垒仅3.4kJ/mol.甲乙醚中乙基α-C上的C-H键最有利于CX2的插入,甲基上的C-H键次之,乙基β-C上的又次之。  相似文献   

11.
在QCISD(T)/6-311++G(d,p)//B3LYP/6-311G(d,p)的水平下计算了乙醇及乙醇燃烧裂解产物与C2H3之间的脱氢反应机理,利用正则变分过渡态理论(CVT)结合小曲率隧道效应模型(SCT)计算400~2000 K范围内的速率,对比OH,H及CH3等自由基相似脱氢反应速率,选择2条具有较快反应速率的通道(C2H3+C2H5OH→TS1→C2H4+C2H5O和C2H3+CH3HCO→TS4→C2H4+CH3CO).将这2个反应耦合到正庚烷/乙醇混合燃料及异辛烷/乙醇混合燃料的机理中,利用CHEMKIN程序中预混火焰模型模拟混合燃料的燃烧过程并进行路径分析.对比相应的实验数据发现,改进的动力学模型对燃烧过程中C2H3路径上相近组分的预测精度有较大改善,而对C2H3路径上较远的组分丙炔(C3H4)和乙烯基乙炔(C4H4)等影响不大.  相似文献   

12.
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group.  相似文献   

13.
C2H3自由基与O2反应的红外发射光谱及反应通道   总被引:2,自引:0,他引:2  
The reaction of vinyl radicals with oxygen was investigated by Time-Resolved Fourier Transform infrared emission spectroscopy. The radicals were produced by the pulsed laser photolysis of C_2H_3Br at 248 nm. Vibrationally excited products of H_2CO(v1), HCO(v3), CO_2(v3, v), CH_3(v3), C_2H_2(v3), HO_2(v1), C_2H_2O_2(v3+v11), CO(v) formed in the C2H3+O_2 reaction have been observed. Four elementary reaction channels have been verified.  相似文献   

14.
We present state-resolved crossed beam scattering results for the reaction Cl+C2H6-->HCl+C2H5, obtained using direct current slice imaging. The HCl (v=0,J=2) image, recorded at a collision energy of 6.7+/-0.6 kcalmol, shows strongly coupled angular and translational energy distributions revealing features of the reaction not seen in previous studies. The overall distribution is mainly forward scattered with respect to the Cl beam, with a translational energy distribution peaking near the collision energy. However, there is a substantial backscattered contribution that is very different. It shows a sharp peak at 8.0 kcalmol, but extends to much lower energy, implying substantial internal excitation in the ethyl radical coproduct. These results provide new insight into the reaction, and they are considered in terms of alternative models of the dynamics. This work represents the first genuine crossed-beam study in which a product other than the methyl radical was detected with quantum state specificity, showing the promise of the approach generally for high resolution state-resolved reactive scattering.  相似文献   

15.
The effects of two nearly isoenergetic C-H stretching motions on the gas-phase reaction of atomic chlorine with methane are examined. First, a 1:4:9 mixture of Cl(2), CH(4), and He is coexpanded into a vacuum chamber. Then, either the antisymmetric stretch (nu(3)=3019 cm(-1)) of CH(4) is prepared by direct infrared absorption or the infrared-inactive symmetric stretch (nu(1)=2917 cm(-1)) of CH(4) is prepared by stimulated Raman pumping. Photolysis of Cl(2) at 355 nm generates fast Cl atoms that initiate the reaction with a collision energy of 1290+/-175 cm(-1) (0.16+/-0.02 eV). Finally, the nascent HCl or CH(3) products are detected state-specifically via resonance enhanced multiphoton ionization and separated by mass in a time-of-flight spectrometer. We find that the rovibrational distributions and state-selected differential cross sections of the HCl and CH(3) products from the two vibrationally excited reactions are nearly indistinguishable. Although Yoon et al. [J. Chem. Phys. 119, 9568 (2003)] report that the reactivities of these two different types of vibrational excitation are quite different, the present results indicate that the reactions of symmetric-stretch excited or antisymmetric-stretch excited methane with atomic chlorine follow closely related product pathways. Approximately 37% of the reaction products are formed in HCl(v=1,J) states with little rotational excitation. At low J states these products are sharply forward scattered, but become almost equally forward and backward scattered at higher J states. The remaining reaction products are formed in HCl(v=0,J) and have more rotational excitation. The HCl(v=0,J) products are predominantly back and side scattered. Measurements of the CH(3) products indicate production of a non-negligible amount of umbrella bend excited methyl radicals primarily in coincidence with the HCl(v=0,J) products. The data are consistent with a model in which the impact parameter governs the scattering dynamics.  相似文献   

16.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

17.
用时间分辨富里叶红外发射谱研究了高振动激发态CO向C2H2的传能,得到了CO(v=1-3)各振动态布居及其随时间的变化。利用微分法解出弛豫微分方程组,获得CO(v=1-3)向C2H2的传能速率常数分别为:2.0±0.1,6.0±0.2和9.4±0.8(10^-13cm^3·molecule^-1·s^-1)。传能速率随着振动量子数的增加而迅速增加。CO的振动能应向C2H2的对称伸缩模v2近共振V-  相似文献   

18.
A detailed computational study is performed on the unknown radical-molecule reactions between HCO/HOC and acetylene (C2H2) at the CCSD(T)/6-311G(2d,p)//B3LYP/6-311G(d,p)+ZPVE, Gaussian-3//B3LYP/6-31G(d), and Gaussian-3//MP2(full)/6-31G(d) levels. For the HCO + C2H2 reaction, the most favorable pathway is direct C-addition forming the intermediate HC=CHCH=O followed by a 1,3-H-shift leading to H2C=CHC=O, which finally dissociates to the product C2H3 + CO. The overall reaction barrier is 13.8, 10.5, and 11.3 kcal/mol, respectively, at the three levels. The quasi-direct H-donation process to produce C2H3 + CO with barriers of 14.0, 14.1, and 14.1 kcal/mol is less competitive. Thus only at higher temperatures could the HCO + C2H2 reaction play a role. In contrast, the HOC + C2H2 reaction can barrierlessly generate C2H3 + CO via the quasi-direct H-donation mechanism proceeding via a prereactive complex with OH...C2 hydrogen bonding. This is suggestive of the potential importance of the HOC + C2H2 reaction in both combustion and interstellar processes. However, the direct C-addition channel is much less competitive. For both reactions, the possible formation of the intriguing interstellar molecules propadiene and propynal is also discussed. The present theoretical study represents the first attempt to probe the reaction mechanism between HOC and pi-systems. Future laboratory investigations on both reactions (particularly HOC + C2H2) are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号