首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
As a common and high-risk type of disease, heart disease seriously threatens people’s health. At the same time, in the era of the Internet of Thing (IoT), smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases. Therefore, the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases. In this paper, we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network (CNN) and Encoder-Decoder model. The model uses Long Short-Term Memory (LSTM) to consider the influence of time series features on classification results. Simultaneously, it is trained and tested by the MIT-BIH arrhythmia database. Besides, Generative Adversarial Networks (GAN) is adopted as a method of data equalization for solving data imbalance problem. The simulation results show that for the inter-patient arrhythmia classification, the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy, of which the accuracy can reach 94.05%. Especially, it has a better advantage for the classification effect of supraventricular ectopic beats (class S) and fusion beats (class F).  相似文献   

3.
The Convolutional Neural Network (CNN) is a widely used deep neural network. Compared with the shallow neural network, the CNN network has better performance and faster computing in some image recognition tasks. It can effectively avoid the problem that network training falls into local extremes. At present, CNN has been applied in many different fields, including fault diagnosis, and it has improved the level and efficiency of fault diagnosis. In this paper, a two-streams convolutional neural network (TCNN) model is proposed. Based on the short-time Fourier transform (STFT) spectral and Mel Frequency Cepstrum Coefficient (MFCC) input characteristics of two-streams acoustic emission (AE) signals, an AE signal processing and classification system is constructed and compared with the traditional recognition methods of AE signals and traditional CNN networks. The experimental results illustrate the effectiveness of the proposed model. Compared with single-stream convolutional neural network and a simple Long Short-Term Memory (LSTM) network, the performance of TCNN which combines spatial and temporal features is greatly improved, and the accuracy rate can reach 100% on the current database, which is 12% higher than that of single-stream neural network.  相似文献   

4.
Knee Osteoarthritis (KOA) is a degenerative knee joint disease caused by ‘wear and tear’ of ligaments between the femur and tibial bones. Clinically, KOA is classified into four grades ranging from 1 to 4 based on the degradation of the ligament in between these two bones and causes suffering from impaired movement. Identifying this space between bones through the anterior view of a knee X-ray image is solely subjective and challenging. Automatic classification of this process helps in the selection of suitable treatment processes and customized knee implants. In this research, a new automatic classification of KOA images based on unsupervised local center of mass (LCM) segmentation method and deep Siamese Convolutional Neural Network (CNN) is presented. First-order statistics and the GLCM matrix are used to extract KOA anatomical Features from segmented images. The network is trained on our clinical data with 75 iterations with automatic weight updates to improve its validation accuracy. The assessment performed on the LCM segmented KOA images shows that our network can efficiently detect knee osteoarthritis, achieving about 93.2% accuracy along with multi-class classification accuracy of 72.01% and quadratic weighted Kappa of 0.86.  相似文献   

5.
传统的基于方向梯度直方图与支持向量机的行人检测方法运算量大,针对这一问题,本文从轮廓特征的角度出发,提出了头肩轮廓特征与神经网络相结合的检测方法。该方法根据人体头肩模型具有相对稳定性,且轮廓特征可以作为人体识别的依据,采用边缘检测与均值漂移相结合的方式提取人体轮廓,采用经PCA降维的傅里叶描述子提取轮廓特征,结合神经网络分类器完成初次人体识别。采用RGB头发模型和均值漂移方法,对遮挡情况下被判别为非人体的目标图像做进一步处理,聚类出多个人体头肩模型,重新参与分类。实验结果表明,本方法人体检测的准确率和检测速度与现有的算法相比都有所提高,且克服了遮挡情况下人体头肩模型提取错误的弊端,提高了人体检测的识别率和应用范围。  相似文献   

6.
This paper presents a handwritten document recognition system based on the convolutional neural network technique. In today’s world, handwritten document recognition is rapidly attaining the attention of researchers due to its promising behavior as assisting technology for visually impaired users. This technology is also helpful for the automatic data entry system. In the proposed system prepared a dataset of English language handwritten character images. The proposed system has been trained for the large set of sample data and tested on the sample images of user-defined handwritten documents. In this research, multiple experiments get very worthy recognition results. The proposed system will first perform image pre-processing stages to prepare data for training using a convolutional neural network. After this processing, the input document is segmented using line, word and character segmentation. The proposed system get the accuracy during the character segmentation up to 86%. Then these segmented characters are sent to a convolutional neural network for their recognition. The recognition and segmentation technique proposed in this paper is providing the most acceptable accurate results on a given dataset. The proposed work approaches to the accuracy of the result during convolutional neural network training up to 93%, and for validation that accuracy slightly decreases with 90.42%.  相似文献   

7.
目的研究无需进行复杂的图像预处理和人工特征提取,就能提高光学遥感图像的船只检测准确率和实现船只类型精细分类。方法对输入的检测图像,采用选择性搜索的方法产生船只候选区域,用已经标记好的训练样本对卷积神经网络进行监督训练,得到网络参数,然后使用经过监督训练的卷积神经网络提取抽象特征,并对候选区域进行分类,根据船只候选区域的分类概率同时确定船只的位置以及类型。结果与现有的2种检测方法进行对比,实验结果表明卷积神经网络能有效提高船只检测准确率,平均检测准确率达到了93.3%。结论该检测方法无需进行复杂的预处理,能同时对船只进行检测和分类,并能有效提高船只检测准确率。  相似文献   

8.
Nowadays, the amount of wed data is increasing at a rapid speed, which presents a serious challenge to the web monitoring. Text sentiment analysis, an important research topic in the area of natural language processing, is a crucial task in the web monitoring area. The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data. Deep learning is a hot research topic of the artificial intelligence in the recent years. By now, several research groups have studied the sentiment analysis of English texts using deep learning methods. In contrary, relatively few works have so far considered the Chinese text sentiment analysis toward this direction. In this paper, a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network (CNN) in deep learning in order to improve the analysis accuracy. The feature values of the CNN after the training process are nonuniformly distributed. In order to overcome this problem, a method for normalizing the feature values is proposed. Moreover, the dimensions of the text features are optimized through simulations. Finally, a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances. Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods, e.g., the support vector machine method.  相似文献   

9.
针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中设置卷积像素相对于中心像素各自的x,y方向偏移量,并利用反向传播训练偏移量以增加感受野的变形适应性。同时,采用密集连接的方式以保持模型不遗漏边缘瑕疵信息。最后,根据瑕疵类别预测和位置边框回归实现瑕疵的分类和定位检测。实验结果表明:该模型的平均检测精度和单类目标检测精度标准差分别为93.53%,2.5139,相比于其他方法更具有竞争力。  相似文献   

10.
李海山  唐海艳  梁栋  韩军 《包装工程》2021,42(23):170-177
目的 提取样本图像颜色直方图特征对卷积神经网络进行训练,达到快速、高准确率检测图像颜色缺陷的目的.方法 将标准图像从RGB颜色空间转换至HSV颜色空间,通过改变图像H,S,V三分量值获取训练样本和测试样本;在HSV颜色空间中非均匀量化图像的颜色直方图,得到所有训练样本和测试样本的颜色直方图特征;利用样本图像颜色直方图特征训练卷积神经网络,然后对测试样本进行检测,研究检测的速度、准确率,并将该检测方法与逐像素、超像素、BP神经网络和支持向量机方法进行对比.结果 对于图片尺寸为512×512的彩色图像,卷积神经网络检测单幅图片的平均检测时间约为57.66 ms,训练样本图像为50000张时,卷积神经网络方法对10000张测试样本进行检测的准确率为99.77%.结论 卷积神经网络方法在保证高准确率的前提下大幅提高检测精度,对于印刷品色差缺陷在线检测具有良好的应用价值.  相似文献   

11.
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers. The feature loss factor increases the label value to identify the patterns with the kernel-based matching. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better.  相似文献   

12.
Distributed Denial-of-Service (DDoS) has caused great damage to the network in the big data environment. Existing methods are characterized by low computational efficiency, high false alarm rate and high false alarm rate. In this paper, we propose a DDoS attack detection method based on network flow grayscale matrix feature via multiscale convolutional neural network (CNN). According to the different characteristics of the attack flow and the normal flow in the IP protocol, the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary. Based on the network flow grayscale matrix feature (GMF), the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation, global features and local features of the network flow are extracted. A DDoS attack classifier based on multi-scale convolution neural network is constructed. Experiments show that compared with correlation methods, this method can improve the robustness of the classifier, reduce the false alarm rate and the missing alarm rate.  相似文献   

13.
心率变异性(HRV)信号包含大量心脏和心血管系统的生理和病理信息,对其进行深入分析可以帮助诊断和预警心律不齐等心脏疾病.论文利用MIT-BIH心电数据库,提取正常心律和心律不齐两种心电数据并进行信号预处理以消除噪声干扰;采用小波变换提取小波系数的模极值和过零点以得到心电R波信号,计算其一阶差分得到HRV序列.然后,提取...  相似文献   

14.

Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking. This is a task of decoding the text from the speaker’s mouth movement. This paper proposes a lip-reading model that helps deaf people and persons with hearing problems to understand a speaker by capturing a video of the speaker and inputting it into the proposed model to obtain the corresponding subtitles. Using deep learning technologies makes it easier for users to extract a large number of different features, which can then be converted to probabilities of letters to obtain accurate results. Recently proposed methods for lip reading are based on sequence-to-sequence architectures that are designed for natural machine translation and audio speech recognition. However, in this paper, a deep convolutional neural network model called the hybrid lip-reading (HLR-Net) model is developed for lip reading from a video. The proposed model includes three stages, namely, pre-processing, encoder, and decoder stages, which produce the output subtitle. The inception, gradient, and bidirectional GRU layers are used to build the encoder, and the attention, fully-connected, activation function layers are used to build the decoder, which performs the connectionist temporal classification (CTC). In comparison with the three recent models, namely, the LipNet model, the lip-reading model with cascaded attention (LCANet), and attention-CTC (A-ACA) model, on the GRID corpus dataset, the proposed HLR-Net model can achieve significant improvements, achieving the CER of 4.9%, WER of 9.7%, and Bleu score of 92% in the case of unseen speakers, and the CER of 1.4%, WER of 3.3%, and Bleu score of 99% in the case of overlapped speakers.

  相似文献   

15.
Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate. Early diagnosis may increase the chances of treatment and survival however the process is time-consuming (reliability and complexity involved to extract the hand-crafted features) and largely depends on pathologists’ experience. Convolutional Neural Network (CNN—an end-to-end model) is known to be an alternative to overcome the aforesaid problems. Therefore, this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet (a high-class imbalanced dataset). Though, during training, class-imbalanced data can negatively affect the performance of CNN. Therefore, an oversampling technique has been proposed to overcome the aforesaid issue and improve generalization performance. In this process, a hierarchical CNN model is designed, in which the former model is non-regularized (due to dense architecture) and the later one is regularized, specifically designed for small histopathology images. Moreover, the regularized model is integrated with CNN’s basic architecture to reduce overfitting. Experimental results demonstrate that oversampling might be an effective way to address the imbalanced class problem during training. The training and testing accuracies of the non-regularized CNN model are 98% & 78% with an imbalanced dataset and 96% & 81% with a balanced dataset, respectively. The regularized CNN model training and testing accuracies are 84% & 75% for an imbalanced dataset and 87% & 86% for a balanced dataset.  相似文献   

16.
为增强对新冠肺炎与普通肺炎的区分能力,协助医护人员对肺炎患者进行胸部CT检测,在人工智能图像分析的基础上提出了一种基于CT图像卷积神经网络处理新冠肺炎的检测方法.首先,搭建一个卷积神经网络模型,通过评估模型深度对检测结果的影响,以选择最佳的网络结构;其次,提出了一种禁忌遗传算法,用以获取网络模型中最优的超参数组合,增强...  相似文献   

17.
王胜  吕林涛  杨宏才 《包装工程》2019,40(11):203-211
目的 为了改善传统机器检测印刷产品缺陷存在误费率高的不足。方法 提出以卷积神经网络为控制核心的印刷品缺陷检测系统。设计可在实际检测中应用的卷积神经网络,设计在线印刷质量检测系统的硬件结构。结果 对结构相同而训练次数、学习率不同的卷积神经网络进行了缺陷检测的性能对比,验证了该卷积神经网络在学习率小于0.01时,可以获得较好的识别效果;在学习率大于0.05时,网络不容易收敛。网络训练次数越多,精度越高,相应的训练时间也较长。在满足快速性和精确度的条件下,确定了适应某印刷品的缺陷检验网络训练次数为50,学习率为0.005,此时的识别率为90%。结论 经过实验证明,该检测系统具有良好的缺陷识别能力,缺陷类型的分类准确率较高。该系统具有一定的实用价值。  相似文献   

18.
Object detection (OD) in remote sensing images (RSI) acts as a vital part in numerous civilian and military application areas, like urban planning, geographic information system (GIS), and search and rescue functions. Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions. The latest advancements in deep learning (DL) approaches permit the design of effectual OD approaches. This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection (AEODCNN-VD) model on Remote Sensing Images. The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly. To detect vehicles, the presented AEODCNN-VD model employs single shot detector (SSD) with Inception network as a baseline model. In addition, Multiway Feature Pyramid Network (MFPN) is used for handling objects of varying sizes in RSIs. The features from the Inception model are passed into the MFPN for multiway and multiscale feature fusion. Finally, the fused features are passed into bounding box and class prediction networks. For enhancing the detection efficiency of the AEODCNN-VD approach, AEO based hyperparameter optimizer is used, which is stimulated by the energy transfer strategies such as production, consumption, and decomposition in an ecosystem. The performance validation of the presented method on benchmark datasets showed promising performance over recent DL models.  相似文献   

19.
根据火灾探测的特点,提出相应的模糊神经网络,论述综合处理多种火灾信号的模糊处理计算模型;针对具体应用,对网络结构进行了改进。由于模糊神经网络的自适应特性和推理过程易于理解的特点,它很适用于高层建筑这样的复杂环境,并可明显提高火灾探测的灵活性和准确性。  相似文献   

20.
赵鹏  唐英杰  杨牧  安静 《包装工程》2020,41(5):192-196
目的针对传统无纺布缺陷分类检测中人工依赖性强、效率低等问题,提出一种能够满足工厂要求的卷积神经网络分类检测方法。方法首先建立包括脏点、褶皱、断裂、缺纱和无缺陷等5种共计7万张无纺布图像样本库,其次构造一个具有不同神经元个数的卷积层和池化层的神经网络,然后采用反向传播算法逐层更新权值,通过梯度下降法最小化损失函数,最后利用Softmax分类器实现无纺布的缺陷分类检测。结果构建了12层的卷积神经网络,通过2万张样本进行测试实验,无缺陷样本准确率可以达到100%,缺陷样本分类准确率均在95%以上,检测时间在35 ms以内。结论该方法能够满足工业生产线中对于无纺布缺陷实时分类检测的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号