首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
The main equations and conditions at the phase transition front are presented for a generalized model of secondary frost heave in freezing fine-grained soils. The analytical criterion for the stability/instability of the freezing phase front in porous media is derived. This criterion is obtained for the occurrence of the frost heave process by using the perturbation method in a two-dimensional, coupled heat and mass transfer model. This model assumes that the non-instantaneous crystallization process takes place in the kinetic zone, and that the rate of crystallization is a function of supercooling. This corresponds to the Arrhenius form equation and agrees with experimental investigations. The perturbation analysis of the freezing front shows that the stability criterion depends upon 1) the Stefan and Peclet numbers, 2) a parameter describing the phase transition kinetics and also 3) dimensionless parameters which characterize the frost heave process. Employing Fourier synthesis, actual front shape evolution is calculated. It is seen that the front displays a periodic morphology whose scale is essentially unrelated to that of the initial (starting) perturbation. The effect of the non-instantaneous kinetics on the front shape evolution is described. As is shown in results, the kinetics has a stabilizing effect and, in this case, the perturbations grow more slowly. The theoretical stability/instability conditions as predicted from the derived criterion were found to be in agreement with experimental investigations of the formation of soil cryogenic structure in the freezing process. On the basis of the asymptotic solution the engineering approach for the calculation of the heave rate and maximal frost penetration depth values — main characteristics for design and construction in cold regions, is presented. The good agreement between calculated values and experimental data is observed.  相似文献   

2.
The proposed China-Russia Crude Oil Pipeline (CRCOP) will be subjected to strong frost heave and thaw settlement of the surrounding soil as it traverses permafrost and seasonally frozen ground areas in Northeastern China. The freezing-thawing processes, the development of the maximum frozen cylinder in taliks and thawed cylinder in permafrost areas, and the variations in the maximum freezing depths under the pipeline in taliks and thawing depths in different permafrost regions near Mo'he station, the first pumping station in China, were studied in detail using numerical methods in this paper. The inlet oil temperature at Mo'he station was assumed to vary from 10 to − 6 °C in a sine wave form during the preliminary design phase. Research results showed that the freezing-thawing processes of soils surrounding the buried pipeline had distinct differences from those in the undisturbed ground profile in permafrost areas. In summer, there was downward thawing from the ground surface and upward and downward thawing from the pipeline's surface once the temperature of the oil rose above 0 °C. In winter, downward freezing began from the ground surface but upward and downward cooling of the cylinder around the pipeline didn't begin until the temperature of the oil dropped below 0 °C. However, in the undisturbed ground profile, downward thawing from the ground surface occurred in summer and downward freezing from the ground surface and upward freezing from the permafrost table occurred in winter. The maximum thawing depths and thawed cylinder around the pipeline in warm permafrost enlarged with elapsing time and decreasing water content of the soils. In taliks, the maximum freezing depths and frozen cylinder around the pipeline kept shrinking with elapsing time and increasing water content of the soils. The freezing-thawing processes and development of the thawed and frozen cylinders around the pipeline were muted by any insulation layer surrounding the pipeline. Insulation had better thermal moderating on the heat exchange between the pipeline and the surrounding soils during the early operating period. But its role slowly weakened after a long-term operating. Research results will provide the basis for assessment and forecasting of engineering geological conditions, analysis of mechanical stability of the pipeline, foundation design, and pipeline construction and maintenance.  相似文献   

3.
The freezing and thawing of liquid in porous media in connection with the question concerning the frost durability of solid materials is an important subject for discussion in civil engineering. Each construction or body which is in contact with liquid and frozen water is criticized by its resistance to the environment. The durability concerning frost attacks of a building material is affected by its porosity and the pore size distribution. The ice formation is a phenomenon of coupled heat and mass transport in freezing porous media, and is primarily caused by the expansion of ice in connection with hydraulic pressure. The volume increases due to the freezing front inside the porous solid. Taking into account the aforementioned effects in porous materials, a simplified macroscopic model within the framework of the Theory of Porous Media (TPM) for the numerical simulation of initial and boundary value problems of freezing and thawing processes of super saturated porous solids will be presented. The phase change between the ice and the liquid phase is modeled by different real densities of the phases.  相似文献   

4.
Ultrasonic velocities of compressional and shear waves in frozen sand, silty-sand and silt were measured at subfreezing temperature and the relationship between acoustic and physical-mechanical properties examined. Ultrasonic measurements revealed that the influence of temperature on ultrasonic velocities is due to the phase transition from water to ice. Different methods were proposed to determine the amount of unfrozen water in frozen soils. The unfrozen water content was measured directly by time domain reflectometry and compared to predicted values using different theoretical approaches. The prediction models showed good agreements with measured values at low temperatures. However, the shape of the curves obtained did not completely satisfying as the estimated unfrozen water fraction near 0 °C was significantly greater than the measured values. Finally, based on the elastic wave theory and measured acoustic velocities the elastic constants of the frozen soils were calculated. The changes in elastic constants were found to be related to the increase in ice content, ice stiffness by ice cementation and a decrease in unfrozen water content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号