共查询到20条相似文献,搜索用时 22 毫秒
1.
Dinggen Li Renlang Wang Gang Yang Jianlong Wan 《International Journal of Hydrogen Energy》2021,46(7):5790-5798
The micro-jet diffusion flame can act as the heat source for the micro power generation systems due to some advantages. The present work investigates the effect of hydrogen addition on the structure and stabilization of micro-jet methane diffusion flame by numerical simulation. The results show that the oval flame becomes more and more circular with the increase of hydrogen addition fraction. The addition of hydrogen remarkably suppresses the increase of the flame height with the inlet velocity. The methane sharply decreases around the outlet of the micro-jet tube due to the high fresh fuel temperature. The intermediate species (e.g., H2 and CO) increase sharply before the flame front, and they are consumed sharply within the flame front. With the increase of hydrogen addition fraction, the concentration gradients of reactive species increase before the flame front, while the flame temperature decreases. In addition, with the increase of hydrogen addition fraction, the micro-jet flame root shifts toward the tube-wall and downstream direction at the radial and axial directions, respectively, and the addition of hydrogen decreases the anchoring temperature of the micro-jet flame root, which is conductive to improve the flame stabilization. Meanwhile, a large hydrogen addition fraction is detrimental for the flame stabilization in terms of the thermal interaction between the micro-jet flame and tube-wall. However, the positive effects brought by a large hydrogen addition fraction are noticeably larger than the adjunctive negative effects. This study not only provides the guideline for further expanding the operating range of the micro-jet methane diffusion flame but also helps us to gain insights into the mechanism of hydrogen addition on improving the flame stabilization. 相似文献
2.
The mechanisms of the influence of hydrogen enrichment on the combustion and emission characteristics of an n-heptane fuelled homogeneous charge compression ignition (HCCI) engine was numerically investigated using a multi-zone model. The model calculation successfully captured the most available experimental data. The results show that hydrogen addition retards combustion phasing of an n-heptane fuelled HCCI engine due to the dilution and chemical effects, with the dilution effect being more significant. It is because of the chemical effect that combustion duration is reduced at a constant compression ratio if an appropriate amount of hydrogen is added. As a result of retarded combustion phasing and reduced combustion duration, hydrogen addition increases indicated thermal efficiency at a constant combustion phasing. Hydrogen addition reduces indicated specific unburned hydrocarbon emissions, but slightly increases normalized unburned hydrocarbon emissions that are defined as the emissions per unit burned n-heptane mass. The increase in normalized unburned hydrocarbon emissions is caused by the presence of more remaining hydrocarbons that compete with hydrogen for some key radicals during high temperature combustion stage. At a given hydrogen addition level, N2O emissions increases with overly retarding combustion phasing, but hydrogen addition moderates this increase in N2O emissions. 相似文献
3.
A detailed numerical study was conducted to investigate the effects of hydrogen and helium addition to fuel on soot formation in atmospheric axisymmetric coflow laminar methane/air diffusion flame. Detailed gas-phase chemistry and thermal and transport properties were employed in the numerical calculations. Soot was modeled using a PAH based inception model and the HACA mechanism for surface growth and oxidation. Numerical results were compared with available experimental data. Both experimental and numerical results show that helium addition is more effective than hydrogen addition in reducing soot loading in the methane/air diffusion flame. These results are different from the previous investigations in ethylene/air diffusion flames. Hydrogen chemically enhances soot formation when added to methane. The different chemical effects of hydrogen addition to ethylene and methane on soot formation are explained in terms of the different effects of hydrogen addition on propargyl, benzene, and pyrene formation low in the flames. 相似文献
4.
Harun Yilmaz Omer Cam Selim Tangoz Ilker Yilmaz 《International Journal of Hydrogen Energy》2017,42(40):25744-25755
This paper aims to present modeling results of hydrogen/air combustion in a micro-cylindrical combustor. Modeling studies were carried out with different turbulence models to evaluate performance of these models in micro combustion simulations by using a commercially available computational fluid dynamics code. Turbulence models implemented in this study are Standard k-ε, Renormalization Group k-ε, Realizable k-ε, and Reynolds Stress Transport. A three-dimensional micro combustor model was built to investigate impact of various turbulence models on combustion and emission behavior of studied hydrogen/air flames. Performance evaluation of these models was executed by examining combustor outer wall temperature distribution; combustor centerline temperature, velocity, pressure, species and NOx profiles. Combustion reaction scheme with 9 species and 19 steps was modeled using Eddy Dissipation Concept model. Results obtained from this study were validated with published experimental data. Numerical results showed that two equation turbulence models give consistent simulation results with published experimental data by means of trend and value. Renormalization Group k-ε model was found to give consistent simulation results with experimental data, whereas Reynolds Stress Model was failed to predict detailed features of combustion process. 相似文献
5.
Chenheng Yuan Cuijie Han Yang Liu Yituan He Yiming Shao Xiaochun Jian 《International Journal of Hydrogen Energy》2018,43(29):13583-13593
The free-piston engine (FPE) is a new crankless engine, which operates with variable compression ratio, flexible fuel applicability and low pollution potential. A numerical model which couples with dynamic, combustion and gas exchange was established and verified by experiment to simulate the effects of different hydrogen addition on the combustion and emission of a diesel FPE. Results indicate that a small amount of hydrogen addition has a little effect on the combustion process of the FPE. However, when the ratio of hydrogen addition (RH2) is more than 0.1, the RH2 gives a positive effect on the peak in-cylinder gas pressure, temperature, and nitric oxide emission of the FPE, while soot emission decreases with the increase of hydrogen addition. Moreover, the larger RH2 induces a longer ignition delay, shorter rapid combustion period, weaker post-combustion effect, greater heat release rate, and earlier peak heat release rate for the FPE. Nevertheless, the released heat in rapid combustion period is significantly enhanced by the increase of RH2. 相似文献
6.
The current study examined the self-excited thermoacoustic instability of hydrogen/methane premixed flames using a variable-length combustor (300–1100 mm). The global dynamic pressure, heat release rate oscillation, together with the flame dynamics were studied. Results showed that both the hydrogen concentration and the chamber length were critical in determining the acoustic oscillation mode and instability trend. Low-frequency primary acoustic modes (<200 Hz) were mainly excited when the hydrogen concentration was low, whereas primary acoustic modes with relatively higher frequencies (~400 Hz) tended to occur in cases with a high hydrogen proportion (>40%). For primary acoustic modes lower than 200 Hz, the primary oscillation frequency tended to increase linearly with a rising hydrogen proportion. Heat release oscillation and flame dynamics analyses demonstrated that for the flame with large-scale shape deformation, the initial addition of hydrogen would intensify the heat release oscillation. Nevertheless, a further increase in the hydrogen level tended to inhibit the heat release oscillation by weakening the flame shape deformation. Eventually, a sufficient high-level of hydrogen addition would weaken the primary acoustic modes that have similar frequencies. 相似文献
7.
《International Journal of Hydrogen Energy》2023,48(10):4064-4072
The bluff body is commonly used to improve micro combustion. The micro combustor with multiple rectangular bluff bodies in a single row was proposed. The effects of bluff bodies on H2/air combustion characteristics were numerically studied. The temperature distributions, ignition position, combustion efficiency and blow-out limit were investigated via changing the total width and number of bluff bodies. The results show that the combined use of multiple bluff bodies can further expand the blow-out limit of H2/Air. The effect of high temperature and viscous force on the flow velocity is main factors for the flame morphology. When the total width of bluff bodies is 2 mm, the blow-out limit decreases with the increase of bluff body number. When the total width of bluff bodies is 4 mm and 6 mm, the blow-out limit increases with the increase of the number of bluff bodies. With the increase of inlet velocity, the complete combustion efficiency decreases. The combustion efficiency in the combustor with wider blow-out limit decreases more slowly. It indicates that the combustor with multi-bluff bodies is more suitable for the operation conditions with high flow velocity. 相似文献
8.
Omer Cam Harun Yilmaz Selim Tangoz Ilker Yilmaz 《International Journal of Hydrogen Energy》2017,42(40):25801-25811
Main challenges for micro power generators that utilize combustion process for energy production are inadequate residence time, destructive radical wall interactions and intensified heat loss which are mainly rooted from size limitation of such devices. To achieve high and uniform energy output, and bring in a solution to these challenges in an environment friendly manner without any kind of fundamental modification, effect of equivalence ratio on combustion and emission behavior of premixed hydrogen/air flames is numerically investigated in this study. For this purpose, an experimentally tested micro cylindrical combustor model is constructed and premixed hydrogen/air combustion in this model is simulated by varying equivalence ratio between 0.5 and 1.2 to find an optimal equivalence ratio with respect to drawbacks of micro power generators. Combustion and turbulence models implemented in this study are Eddy Dissipation Concept and Standard k-ε models, respectively. A detailed hydrogen/air reaction mechanism which consists of 9 species and 19 steps is employed to accurately gain insight into combustion process. Simulation results show that as the equivalence ratio decreases; centerline temperature distribution gets a lower value and the place where chemical reactions take place moves downstream. The most uniform temperature distribution is achieved between 0.8 and 1.0 equivalence ratios. The highest NOx formation is at 0.9 equivalence ratio and its mass fraction decreases sharply when the equivalence ratio reduces from 0.9 to 0.5. 相似文献
9.
Toru Miyamoto Hirokazu HasegawaMasato Mikami Naoya KojimaHajime Kabashima Yasuhiro Urata 《International Journal of Hydrogen Energy》2011,36(20):13138-13149
The present study experimentally investigated the performance and emission characteristics of the diesel engine with hydrogen added to the intake air at late diesel-fuel injection timings. The diesel-fuel injection timing and the hydrogen fraction in the intake mixture were varied while the available heat produced by diesel-fuel and hydrogen per second of diesel fuel and hydrogen was kept constant at a certain value. NO showed minimum at specific hydrogen fraction. The maximum rate of incylinder pressure rise also showed minimum at 10 vol. % hydrogen fraction. However, it is desirable to set the maximum rate of incylinder pressure rise less than 0.5 MPa/deg. to realize low level of combustion noise and NO emission. We attempt to reduce further NO and smoke emissions by EGR. As the result, in the case of the diesel-fuel injection timing of −2 °. ATDC with 3.9 vol. % hydrogen addition, the smoke emission value was 0%, NO emission was low, the cyclic variation was low, and the maximum rate of incylinder pressure rise was acceptable under a nearly stoichiometric condition without sacrificing indicated thermal efficiency. 相似文献
10.
One of the main problems with hydrogen fuelled internal combustion engines is the high NO level due to rapid combustion. Use of diluents with the charge and retardation of the spark ignition timing can reduce NO levels in Hydrogen fuelled engines. In this work a single cylinder hydrogen fuelled engine was run at different equivalence ratios at full throttle. NO levels were found to rise after an equivalence ratio of 0.55, maximum value was about 7500 ppm. High reductions in NO emission were not possible without a significant drop in thermal efficiency with retarded spark ignition timings. Drastic drop in NO levels to even as low as 2490 ppm were seen with water injection. In spite of the reduction in heat release rate (HRR) no loss in brake thermal efficiency (BTE) was observed. There was no significant influence on combustion stability or HC levels. 相似文献
11.
Meng Zhang Zhenhua An Liang Wang Xutao Wei Bieerlan Jianayihan Jinhua Wang Zuohua Huang Houzhang Tan 《International Journal of Hydrogen Energy》2021,46(40):21013-21025
Ammonia, made up of 17.8% hydrogen, has attracted a lot of attention in combustion community due to its zero carbon emission as a fuel in gas turbines. However, ammonia combustion still faces some challenges including the weak combustion and sharp NOx emissions which discourage its application. It was demonstrated that the combustion intensity of ammonia/air flame can be enhanced through adding active fuels like methane and hydrogen, while the NOx emission issue will emerge in the meantime. This study investigates regulation effect of methane and hydrogen on the emission characteristics of ammonia/air flame in a gas turbine combustor. The instantaneous OH profile and global emissions at the combustion chamber outlet are measured with Planar Laser Induced Fluorescence (PLIF) technique and the Fourier Transform Infrared (FTIR), respectively. The flames are also simulated by large eddy simulation to further reveal physical and chemical processes of the emissions formation. Results show that for NH3/air flames, the emissions behavior of the gas turbine combustor is similar to the calculated one-dimensional flames. Moreover, the NOx emissions and the unburned NH3 can be simultaneously controlled to a proper value at the equivalence ratio (φ) of approximate 1.1. The variation of NO and NO2 with φ for NH3/H2/air flames and NH3/CH4/air flames at blending ratio (Zf) of 0.1 are similar to the NH3/air flames, with the peak moving towards rich condition. This indicates that the NH3/air flame can be regulated through adding a small amount of active fuels without increasing the NOx emission level. However, when Zf = 0.3, we observe a clear large NOx emission and CO for NH3/CH4/air flames, indicating H2 is a better choice on the emission control. The LES results show that NO and OH radicals exhibit a general positive correlation. And the temperature plays a secondary role in promoting NOx formation comparing with CH4/air flame. 相似文献
12.
《International Journal of Hydrogen Energy》2023,48(9):3299-3315
This study investigates the effect of intake strategies on the combustion and flows characteristics of hydrogen-chlorine synthesis combustors via numerical methods. A crucial issue of hydrogen-chlorine synthesis combustor is to have a sufficiently low flame height and high conversion efficiency. In this study, the combustion performance of combustors equipped with the annular tube, plum nozzle, and porous-bullet nozzle has been thoroughly analyzed. The temperature distribution and gas flow are analyzed using the method of fluid-solid coupling, which indicates that the combustor with porous-bullet nozzle had the best gas distribution, the maximum HCl mole fraction at outlet is 97.24%, and the lowest flame height is 3.4 m, which is 27.15% lower than the combustor with the annular tube. Furthermore, the nozzle structure has a great influence on the fluid velocity in the recirculation zone of the combustor. Finally, the effect of hydrogen/chlorine equivalence ratio (?) and inlet volume flow rate were analyzed, and it can be concluded that with the increase of inlet volume flow, the high-temperature area inside the combustor gradually increases. As the equivalent ratio increases, the combustor outlet's mole fraction changes with a normal distribution trend. It is the most appropriate when the chlorine gas flow rate is 1,100 m3/h and ? = 1.05. The research can be applied to the field of high-purity hydrogen chlorine production, providing researchers with some solutions. 相似文献
13.
Yituan He Mengqing Liang Chunzhi Liu Shiyong Liao Rundai Yang Liheng Qin Xiaochun Jian Yiming Shao 《International Journal of Hydrogen Energy》2021,46(27):14813-14823
In order to find out the respective influences of chemical reactivity and physical transport of hydrogen additive on nonpremixed flame, two fabricated hydrogen additions were introduced into nonpremixed methane/air flame modeling. Hydrogen addition was assumed as inert gas or partial reactivity fuel to respectively explore the kinetic reasons by the three aspects: the elementary reaction route, heat release, and physical diffusion of hydrogen addition. The analyses were implemented in terms of OH and H production. Results showed that, hydrogen addition can enhance OH and H production via elementary reactions, and causes flame reaction zone migration through the coupling interaction between the low-temperature heat enthalpy release and diffusion behavior of hydrogen addition. R84 (OH + H2=H + H2O) and R38 (H + O2=O + OH) are the most important elementary reactions related to OH and H production. The physical incentive of hydrogen addition can hardly work without the chemical effects of hydrogen addition. 相似文献
14.
In this paper, some models of comparative combustion characteristics for gasoline and hydrogen fuelled spark ignition internal combustion engines were developed and discussed from a thermodynamic and heat transfer perspective. The geometry used was that of a 3.4L GM V6 engine with a compression ratio of 9.5:1. Models for mass fraction burned, pressure, temperature, and gas speed were developed according to the literature survey and graphed over the cycle range. Furthermore, Pressure–Volume and Temperature–Entropy models were developed for both gasoline and hydrogen fuelled engines. Analysis of these models indicated approximately a 6.42% increase thermal efficiency for the hydrogen fuelled engine due to less exhaust blow down, less heat rejection during the exhaust stroke, and its shorter combustion duration closer to TDC. However, it was found that the hydrogen fuelled engine had approximately a 35.0% decrease in power output at an equivalence ratio of 1.0 due to the decrease in MEP and a greater amount of heat transfer to the cooling system due to the increased combustion temperatures, shorter quenching distance associated with H2 combustion and greater flame speed. Finally, an increase in cycle temperatures and pressures was observed from increasing the equivalence ratio from 0.4 to 1.0 to 1.2. 相似文献
15.
Seung Hoon Oh Seung Hyun Yoon Hojin Song Jung Guen Han Jong-Min Kim 《International Journal of Hydrogen Energy》2013
Hydrogen is an attractive energy source for improving gasoline engine performance. In this paper, a new hydrogen nanobubble gasoline blend is introduced, and the influence of hydrogen nanobubble on the combustion characteristics of a gasoline engine is experimentally investigated. The test was performed at a constant engine speed of 2000 rpm, and engine load of 40, 60, and 80%. The air-to-fuel equivalence ratio (λ) was adjusted to the stoichiometric (λ = 1), for both gasoline, and the hydrogen nanobubble gasoline blend. The results show that the mean diameter and concentration of hydrogen nanobubble in the gasoline blend are 149 nm and about 11.35 × 108 particles/ml, respectively. The engine test results show that the power of a gasoline engine with hydrogen nanobubble gasoline blend was improved to 4.0% (27.00 kW), in comparison with conventional gasoline (25.96 kW), at the engine load of 40%. Also, the brake specific fuel consumption (BSFC) was improved, from 291.10 g/kWh for the conventional gasoline, to 269.48 g/kWh for the hydrogen nanobubble gasoline blend, at the engine load of 40%. 相似文献
16.
17.
The explosion process of multi-component gas mixture is extremely complex and may cause serious disaster effects. The safety issue concerning explosion of multi-component gas mixture is urgent to be investigated on account of its wide range of applications. In current work, series of experiments were performed in a 20 L spherical explosion vessel at initial conditions of 1 atm and 293 K, involving methane–hydrogen/air mixtures. The proportion of hydrogen in fuels varied from 0% to 100%. It was observed that peak temperature is always behind the peak pressure in arrival time whatever the fuel equivalence is. Experimental values of peak overpressure are lower than adiabatic ones due to heat loss. It was also founded that the hydrogen addition can raise explosion pressure and temperature in experiment but slightly decrease that in adiabatic condition, and both the increase in experiment and the decrease in adiabatic show a linear correlation versus the proportion of hydrogen. Hence the deviation between the experimental results and the adiabatic results decreases as the hydrogen proportion rises. Moreover, the positive effect of hydrogen addition on (dp/dt)max is very slight at low hydrogen proportion, while the effect becomes much more pronounced at higher hydrogen contents, showing an exponential growth. For each fuel composition throughout all experiments, the peak overpressure, peak temperature and (dp/dt)max concerning fuel equivalence ratios of 0.6, 1 and 1.5 follow a same rule: Ф = 1 is the highest, followed by Ф = 1.5 and Ф = 0.6. Finally, the MIEs of gaseous methane–hydrogen/air mixtures at a fuel equivalence ratio of 1.5 were measured as a function of hydrogen proportion. It shows a sharp decrease as the fraction of hydrogen in fuel rises, from 118 mJ for methane–air to 0.12 mJ for hydrogen–air. It is also observed that the MIE of multi-component gas mixtures can be approximately figured as the linear weighted sum of the MIE of each component; the weighting factor is respectively the volume fraction of each component. This can be considered as a universal method to obtain the MIE for a specific multi-component gas. 相似文献
18.
19.
Akihiro Hayakawa Yoshiyuki Arakawa Rentaro Mimoto K.D. Kunkuma A. Somarathne Taku Kudo Hideaki Kobayashi 《International Journal of Hydrogen Energy》2017,42(19):14010-14018
Ammonia is a possible candidate for use as a hydrogen energy carrier as well as a carbon-free fuel. In this study, flame stability and emission characteristics of swirl stabilized ammonia/air premixed flames were experimentally investigated. Results showed that ammonia/air premixed flame could be stabilized for various equivalence ratios and inlet flow velocity conditions in a swirl burner without any additives to enhance the reaction of ammonia even though the laminar burning velocity of ammonia is very slow. The lean and rich blowoff limits were found to be close to the flammability limits of the ammonia flame. In addition, emission characteristics were investigated using an FTIR gas analyzer. The NO concentration decreased and ammonia concentration increased under rich conditions. Moreover, it was found that there is an equivalence ratio in rich condition in which NO and ammonia emission are in the same order. 相似文献
20.
Flame propagation of premixed natural gas–hydrogen–air mixtures was studied in a constant volume combustion bomb. Laminar burning velocities and mass burning fluxes were obtained under various hydrogen fractions and equivalence ratios with various initial pressures, while flame stability and their influencing factors (Markstein length, density ratio and flame thickness) were obtained by analyzing the flame images at various hydrogen fractions, initial pressures and equivalence ratios. The results show that hydrogen fraction, initial pressure as well as equivalence ratio have combined influence on both unstretched laminar burning velocity and flame instability. Meanwhile, according to flame propagation pictures taken by the high speed camera, flame stability decreases with the increase of initial pressures; for given equivalence ratio and hydrogen fraction, flame thickness is more sensitive to the variation of the initial pressure than to that of the density ratio. 相似文献