首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
阐述了磁阻式电子罗盘的工作原理及航向测量方法,并介绍了以霍尼韦尔公司的三轴磁阻传感器HMC1043、美国飞思卡尔半导体公司的三轴加速度计MMA7260及C8051F121单片机为核心设计的三轴磁阻式电子罗盘硬件电路;同时对电子罗盘误差形成原因进行分析,采用基于椭圆拟合的两种不同误差补偿方法对罗差进行补偿;详细分析了每种算法的工作原理,根据现场试验数据对实验结果进行分析验证并得出结论;实验结果表明,补偿后的三轴磁阻式电子罗盘的航向角、俯仰角及滚转角的误差在1°以内,基本达到预期目标,误差补偿效果较好.  相似文献   

2.
通过对磁阻式电子罗盘工作原理的介绍,设计了一套利用磁阻传感器和加速度计测定航向角、俯仰角、侧滚角的电子罗盘测量系统;分析了影响磁阻式电子罗盘测量精度的误差来源,并在此基础上提出了基于牛顿迭代算法的校正方法;最后,经实验结果表明,利用这些校正算法,可使电子罗盘的航向角误差由±9o降到±0.6o,有效地减低由于制造和安装等所引起的误差;同时,这种校正算法不仅适用于电子罗盘,也适用于其它3轴传感器系统。  相似文献   

3.
研究了一种基于MEMS加速度传感器、三轴磁阻传感器和MSP430F169单片机的数字电子罗盘测量系统。介绍了航向的测量原理、航向角表达式以及系统的整体框架,重点阐述了系统的硬件电路设计和误差补偿方法,使罗盘系统精度最大误差从41.5°提高到了1.5°左右。  相似文献   

4.
介绍了三轴磁阻传感器MMC3120MQ的技术特点,并利用此传感器、三轴加速度传感器ADXL335和微控制器MSP430F2618设计了一种具有倾斜补偿功能的手持式电子罗盘。详细分析了磁阻传感器的误差模型,并给出了基于最小二乘椭球拟合的误差补偿算法。在无磁测试转台上进行了测试,试验结果验证了该电子罗盘能够达到较高的精度,水平放置时航向角绝对误差最大值为1.2°左右,可广泛应用于民用导航领域。  相似文献   

5.
基于系统芯片(SoC)的低成本电子罗盘的设计   总被引:1,自引:0,他引:1  
航向与姿态是物体运动轨迹的重要参数,其测量方法一直是导航领域的研究重点.以系统芯片为核心,设计了基于磁阻传感器与MEMS加速度计的全芯片化电子罗盘,并实现了全部信号的无缝直连,最大化地减少了外围器件的使用,其设计使结构简单,降低了成本、体积和功耗,增强了抗干扰的能力.本设计给出了航向角与姿态角的实现算法,分析了电子罗盘的误差,提出了元件级和系统级的误差补偿方法,并提出了一种7项罗差校正公式.经试验证明,系统性能稳定,性价比高,其微型的体积,适合于低速的便携导航应用.  相似文献   

6.
针对电子罗盘测量时存在传感器的零位、灵敏度误差和干扰磁场引起的航向角误差问题,应用一种航向角误差补偿算法进行校正;在分析了电子罗盘航向角测量的工作原理、航向角误差形成原因的基础上,详细阐述了该补偿算法的实现原理,并通过LbVIEW软件仿真验证;同时设计了两种测量方案和测试系统,利用HMC1043芯片的电子罗盘进行多次实测验证并得出结论;实验结果表明:补偿后电子罗盘测量的航向角误差在4.5°以内;该补偿算法补偿效果良好,实现简单。  相似文献   

7.
三轴磁罗盘的设计与误差校正   总被引:1,自引:0,他引:1  
介绍了三轴磁罗盘的工作原理,设计了一种利用磁阻传感器和加速度计测定航向角、俯仰角、侧滚角的测量系统.分析了影响磁罗盘测量精度的误差来源,并在此基础上提出了相应的校正方法.实验结果表明,利用这些算法,可使磁罗盘的航向角误差由±9°降到±0.6°,有效地降低了由于制造和安装等引起的误差.这种校正算法不仪适用于磁罗盘,也适用于其它三轴传感器系统.  相似文献   

8.
所设计的三维磁阻式电子罗盘的硬件方面是由三维磁阻传感器HMC5883l(深圳市凡高科技有限公司)、三维加速度传感器ADXL345B(深圳市创联发科技有限公司)以及微处理器MCU LPC1114FBD48(NXP公司)所组成,来测定系统的航向角、俯仰角和翻滚角。软件方面,通过对误差来源的分析,提出了椭圆拟合误差校正方法,来消除影响罗盘测量精度的误差,实现了高精度、运行稳定的三维电子罗盘。  相似文献   

9.
介绍了三轴电子罗盘的测量原理.利用各向异性磁阻传感器和加速度传感器研制了带倾斜补偿功能的三轴电子罗盘,并论述了电子罗盘的硬件设计和软件流程.针对电子罗盘传感器的误差特点,采用十二位置标定法实现了罗盘的校正.在罗盘处于不同倾斜的情况下进行圆周测试,经误差校正和倾角补偿后的轨迹是大体重合的圆,有效降低了罗盘误差.在某些具备翻滚条件的应用场合,该校正方法还可有效补偿电子罗盘的罗差.  相似文献   

10.
由于磁航向测量系统应用领域日趋拓宽,数字磁罗盘的航向精度亟待提高。简要介绍了由磁阻罗盘、角度传感器和单片机组成的数字磁罗经系统的软硬件组成及工作原理。探讨了使用八角度法进行误差补偿的可行性。通过实验验证能准确自动消除自差实现导航数据的精确、实时、高清晰的显示。  相似文献   

11.
基于MEMS三维磁阻传感器的电子指南针的研究   总被引:1,自引:1,他引:0  
介绍了一种基于MEMS的三维磁阻传感器和加速度传感器的电子指南针系统.相对于由两轴磁阻传感器制造的电子指南针,该系统能够有效补偿倾斜角产生的误差.重点介绍了该系统的测量原理、硬件设计、软件流程.通过中位置均值滤波、限幅滤波、一阶滞后滤波,最大误差控制在1°以内.实验结果表明:本系统可以满足于一般导航领域的要求.  相似文献   

12.
数字磁罗盘的研制   总被引:6,自引:0,他引:6  
剖析了磁阻式罗盘的工作机理,并给出了磁航向角的计算方法。基于霍尼韦尔磁阻传感器,提出了一种低成本的组合式三维捷联数字磁罗盘,该数字磁罗盘具有高分辨力、高精度、低成本的优点。通过分析由磁场矢量叠加产生的罗差,提出了基于罗差傅立叶级数的罗差模型和补偿方法。最后,对该数字磁罗盘进行了实际测试,并对测试结果进行了分析,当采用八位置法标定时,误差能限制在-0.5~+0.5之间。测试结果显示:该数字磁罗盘能够达到较高的精度,满足实际应用的要求。  相似文献   

13.
针对电子罗盘的定位导航应用,开发了一种基于现场可编程门阵列(FPGA)作为微控制器的数字磁罗盘,具有成本低、速度快、功耗小的优点。FPGA负责完成对数字磁阻传感器和数字加速度计的数据采集、方位角计算、LED显示以及串口输出等处理。对罗盘的误差来源进行了分析,重点对其中的硬干扰误差进行了补偿修正。为了验证设计效果,对数字磁罗盘实物进行了测试,测试结果表明:磁罗盘在进行误差补偿后,精度范围能够达到1°~2°左右,且长期运行时稳定,可适用于普通导航领域。  相似文献   

14.
高精度磁电子罗盘的研制   总被引:7,自引:0,他引:7       下载免费PDF全文
介绍了磁电子罗盘的设计.利用自己生产的磁电阻传感器研制了新型的磁电子罗盘.信号调理电路采用交流放大技术,有效解决了磁阻传感器失调及漂移的影响.针对干扰因素的特点,采用八位置标定法进行自动标定.对所研制的罗盘进行了室外试验,最大罗差小于0.1°.试验结果表明,该磁电子罗盘具有较高的精度.  相似文献   

15.
基于HMC5883的电子罗盘设计   总被引:2,自引:0,他引:2  
针对低功耗的手持导航应用,提出了一种基于数字磁阻传感器和MEMS加速度计的小型低功耗电子罗盘设计方案.介绍了电子罗盘工作原理、硬件设计及软件算法,并在分析磁性物质影响的基础上提出了合理可行的矫正方法.实验表明,该电子罗盘能准确测量罗盘朝向,并且功耗低、运行稳定,具有倾斜补偿及校正功能,可用于普通导航领域.  相似文献   

16.
基于DSP的微型飞行器磁罗盘   总被引:1,自引:1,他引:0  
介绍了一种基于数字信号处理器(DSP)的微型飞行器(MAV)磁罗盘,它包括S/R电路,三轴磁阻传感器、信号调理电路和DSP。为了使传感器达到最高的精度,设计了S/R开关电路,消除了高磁场对输出的影响和温度变化引起的偏置误差。详细分析了磁罗盘的误差来源,给出其误差模型,并提出一种非线性、两步补偿算法,此算法也适用于其他存在比例、偏置和非正交误差的二维或三维传感器。经实验测试,该微型磁罗盘误差小于1.2,°且具有体积小、重量轻、功耗低、工作可靠等特点。  相似文献   

17.
焦飞  赵忠  王璐 《测控技术》2007,26(10):85-87
对磁罗盘系统误差和目前多数文献所提出的全姿态磁航向误差补偿方法的不足进行了分析.针对具有一定俯仰角或横滚角的磁罗盘系统磁航向误差建模和补偿问题,提出了基于径向基函数(RBF)神经网络的修正方法,并与BP神经网络方法进行了比较.在分析算法原理的基础上进行了实验仿真,结果表明:采用RBF神经网络在明显提高网络收敛速度的基础上,大大减小了全姿态磁航向误差,校正效果优于BP神经网络.  相似文献   

18.
电子罗盘倾角补偿和干扰补偿的理论分析及实验验证   总被引:1,自引:0,他引:1  
电子罗盘由三轴磁阻传感器、两个倾角传感器和MCU构成。在实际中,复杂环境的磁场干扰和不可避免的倾斜会影响电子罗盘,为了提高测量精度,必须对其进行环境干扰补偿和倾角补偿。本文详细阐述了倾角补偿和干扰补偿的原理,设计了简单的电子罗盘测试样机进行验证,并由实验数据,分析总结出了测量误差图表和结论。  相似文献   

19.
J.  J.   《Sensors and actuators. A, Physical》2009,155(2):233-240
Analysis of various errors of orientation and motion sensors and their influence on resulting compass attitude information are investigated and quantified in this paper. A triple-axis acceleration sensor and a triple-axis magnetic sensor are considered to form a compass module giving full orientation information (attitude). 3D-compass module with PCB-fluxgate sensors and off-shelf acceleration sensor is introduced. Three main sensor error sources are discussed separately and their contribution to final compass heading accuracy is investigated. These are sensor orthogonality error, linearity error and ADC quantization noise. The influence of these errors is simulated on artificial group of test cases which evenly covers various orientations of the compass module. It was found that the errors in the accelerometric system have major influence on the heading accuracy. It was concluded that even low-resolution AD converters may have only a minor influence on the system accuracy, while the dominant error sources are sensor triplet nonorthogonality and sensor non-linearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号