共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The large eddy simulation (LES) using the steady laminar flamelet model is applied to a simple turbulent jet flame with 33.2%
H2, 22.1% CH4 and 44.7% N2 at the Reynolds number of 15,200 in order to validate the numerical methods and to investigate
the flame structure. For the validation, the detailed experimental data of DLR-A flame is used. The numerical results are
in reasonable agreement with experimental results except mass fractions of minor species. In the flow field, the break-down
of the potential core, the vortex structure and the mixing intensity are well captured. In the combustion field, mass fractions
of major species (H2O, CO2, CO) are well predicted quantitatively. Minor species are well predicted qualitatively. In the
present study, the simulations conducted on the Cartesian and cylindrical grids with approximately 6.6× 105 nodes are compared. 相似文献
3.
Supercritical conditions are typically encountered in high-pressure combustion devices such as liquid propellant rockets and gas turbine engines. Significant real fluid behaviors including steep property variations occur when the fluid mixtures pass through the thermodynamic transcritical regime. The laminar flamelet concept is a robust and reliable approach that correctly accounts for real fluid effects, the large variation in thermophysical properties, and the detailed chemical kinetics for turbulent flames at transcritical and supercritical conditions. In the present study, the flamelet equations in the mixture fraction space are extended to treat the flame field of general fluids over transcritical and supercritical states. Flamelet computations are carried out for gaseous hydrogen and cryogenic liquid oxygen flames under a wide range of thermodynamic conditions. Based on numerical results, the detailed discussions are made for the effects of real fluid, pressure, and differential diffusion on the local flame structure and the characteristics encountered in liquid propellant rocket engines. 相似文献
4.
A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The error-landscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion as described by a flamelet model. The Smagorinsky model formulation is used to model the unknown turbulent stresses. We introduce several measures to quantify the total simulation error and observe a striking ‘valley-structure’ in the error that arises as function of the spatial resolution and the Smagorinsky length parameter. The optimal refinement strategy that can be extracted from this error-landscape is reminiscent of that for non-reacting turbulent flow. 相似文献
5.
Hassan I. Kassem Khalid M. SaqrHossam. S. Aly Mohsin M. SiesMazlan Abdul Wahid 《International Communications in Heat and Mass Transfer》2011,38(3):363-367
This work discusses the implementation of eddy dissipation model in OpenFOAM CFD toolbox. The code was validated in modeling of confined non-premixed Methane jet flame. The model predictions were extensively compared against published experimental results as well as ANSYS Fluent® predictions. The differences between the implemented model in OpenFOAM and Fluent were demonstrated. 相似文献
6.
Hugo J. Burbano Jhon ParejaAndrés A. Amell 《International Journal of Hydrogen Energy》2011,36(4):3243-3252
The effects of low pressure on the laminar burning velocity and flame stability of H2/CO mixtures and equimolar H2/CO mixtures diluted with N2 and CO2 were studied experimentally and theoretically. Experiments were conducted at real sub-atmospheric conditions in three places located at high altitudes 500 m.a.s.l. (0.947 atm), 1550 m.a.s.l. (0.838 atm), and 2300 m.a.s.l. (0.767 atm). Flames were generated using contoured slot-type nozzle burners and Schlieren images were used to determine the laminar burning velocity with the angle method. The behavior of the laminar burning velocity at low pressures depends on the equivalence ratio considered; it decreases at lean and very rich equivalence ratios when pressure is increased. However, a contrary behavior was obtained at equivalence ratios corresponding to the highest values of the laminar burning velocity, where it increases as pressure increases. Numerical calculations were also conducted using a detailed reaction mechanism, and these do not reproduce the behavior obtained experimentally; a sensitivity analysis was carried out to examine the differences found. At lean equivalence ratios, flame instabilities were observed for all the syngas mixtures. The range of equivalence ratios where flames are stable increases at lower pressures. This behavior is due to the increase of the flame thickness, which considerably reduces the hydrodynamic instabilities in the flame front. 相似文献
7.
Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames 总被引:5,自引:0,他引:5
Instability analysis of swirling flames is of importance in the design of advanced combustor concepts for aircraft propulsion and powerplant for electricity production. Thermoacoustic instabilities are analyzed here by making use of a nonlinear representation of flame dynamics based on a describing function. In this framework, the flame response is determined as a function of frequency and amplitude of perturbations impinging on the combustion region. This model is adapted to the case of confined swirling flames comprising an upstream manifold, an injection unit equipped with a swirler and a cylindrical flame tube. The flame describing function is experimentally determined and is combined with an acoustic transfer matrix representation of the system to provide growth rates and oscillation frequencies as a function of perturbation amplitude. These data can be used to determine regions of instability, frequency shifts with respect to the acoustic eigenfrequencies and they also yield amplitude levels when self-sustained oscillations of the system have reached a limit cycle. This equilibrium is obtained when the amplitude dependent growth rate equals the damping rate in the system. This requires an independent determination of this last quantity which is here based on measurements of the combustor resonance response curve, together with numerical estimates of the flame contribution to the system response. The geometrical parameters of the upstream manifold and flame tube are varied and the corresponding operating regimes are compared with those predicted with the FDF framework. The present demonstration of the FDF framework in a generic configuration indicates that this can be used in more general situations of technological interest. 相似文献
8.
A level set formulation for premixed combustion LES considering the turbulent flame structure 总被引:1,自引:0,他引:1
In this paper, a consistent and rigorous formulation is developed for the coupling of the G-equation model to an LES flow solver that describes the interactions of the scales of the flame, the turbulence, and the filtering procedure from the resolved turbulence regime to the broadened preheat regions regime. A progress variable equation is introduced to describe the filtered flame structure. The models provided for the sub-filter diffusivity and the filtered reaction term appearing in this equation are consistent with the solution of the G-equation model. The solution of the progress variable equation ensures that the resolved part of the turbulent mixing in the preheat region can be described. However, the C-field is underresolved if the sub-filter Damköhler number is not much smaller than unity, and hence the solution of the C-equation cannot be expected to produce the correct flame propagation speed. The coupling with the G-equation ensures that the flame front described by the filtered reaction progress variable moves with the correct propagation velocity, independent of numerical diffusion caused by an underresolution of the flame. Formulations both for low-Mach number flow solvers and for fully compressible solvers are presented. To validate the formulation, the model is applied in compressible LES of two turbulent flames anchored by a triangular flame-holder. For the statistically stationary case, the mean and RMS progress variable are in very good agreement with experimental data, demonstrating that the model correctly reproduces the flame anchoring and the flame-turbulence interactions in the recirculation zone. For the acoustically pulsed case, the LES fields show the same large scale fluctuations that are present in the experimental data. 相似文献
9.
Mingming Huang Zhedian Zhang Weiwei Shao Yan Xiong Fulin Lei Yunhan Xiao 《热科学学报(英文版)》2014,23(1):96-102
As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas recir- culation was used in this simulation work to evaluate the effect of fuel type and pressure on threshold gas recir- culation ratio of MILD mode. Ignition delay time is also an important design parameter for gas turbine combustor, this parameter is kinetically studied to analyze the effect of pressure on MILD mixture ignition. Threshold gas re- circulation ratio of hydrogen MILD combustion changes slightly and is nearly equal to that of 10 MJ/Nm3 syngas in the pressure range of 1-19 atm, under the conditions of 298 K fresh reactant temperature and 1373 K exhaust gas temperature, indicating that MILD regime is fuel flexible. Ignition delay calculation results show that pres- sure has a negative effect on ignition delay time of 10 MJ/Nm3 syngas MILD mixture, because OH mole fraction in MILD mixture drops down as pressure increases, resulting in the delay of the oxidation process. 相似文献
10.
A numerical study of hydrogen turbulent diffusion flame structure is carried out in the pressure range of 1-10 atm with a special emphasis on mixing. The investigation is conducted under constant volumetric fuel and air flows. Mixing is characterized by mixture fraction, its variance and the scalar dissipation rate. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by computational fluid dynamic (CFD). Computational predictions are analysed at two radial stations (the first one represent the near-field region and the second one the far-field region). The computational results indicate a deterioration of mixing with pressure rise. As a result, flame reaction zone becomes thicker. In addition, mixing and flame structure sensitivity to pressure are found to be high in the first location. Further analysis revealed that the gas becomes increasingly heavy with pressure rise, which hampered its ability to mix. 相似文献
11.
An activation energy asymptotic analysis with one-step overall reaction was performed for the stabilization and extinction of a premixed flame over a rotating disk at sufficiently low pressures, for its relevance in low-pressure CVD (chemical vapor deposition) operations in which the flow is weakly rarefied. Extinction criteria based on the critical Damköhler number were obtained through the S-curve concept, parametrically demonstrating the influence of the CVD operating conditions, such as the spin rate and temperature of the disk, on flame extinction. It is further shown that, while decreasing pressure and hence the reactivity of the mixture tends to extinguish the flame, the trend can be substantially weakened by taking into account of the influence of the Knudsen layer, which reduces the heat loss to the disk as well as the flow stretch rate at the flame. 相似文献
12.
The propagation speeds of expanding spherical flames of cyclohexane, methylcyclohexane and ethylcyclohexane in mixtures of oxygen/inert were measured in a heated, dual-chamber vessel, with the corresponding laminar flame speeds extracted from them through nonlinear extrapolation. Measurements were conducted at atmospheric and elevated pressures up to 20 atm. Computational simulations were conducted using the JetSurF 2.0 mechanism, yielding satisfactory agreement with the present measurements at all pressures, with a slight over-prediction at 1 atm. Measurements reveal the following trend for the flame speeds: cyclohexane > n-hexane > methylcyclohexane ≈ ethylcyclohexane at all pressures, with the maximum difference being approximately 5% at 1 atm and 13% at 10 atm. Examination of the computed flame structure shows that owing to its symmetric ring structure, decomposition of cyclohexane produces more chain-branching 1,3-butadiene and less chain-terminating propene. On the contrary, a more balanced distribution of intermediates is present in the flames of methylcyclohexane and ethylcyclohexane due to substitution of the alkyl group for H. 相似文献
13.
This paper reveals lift-off behavior of jet diffusion flames in sub-atmospheric pressures less than 100 kPa, in view of that the current knowledge on this topic is limited for normal pressure conditions. Physically, the variation of ambient pressure may have significant influence on the lift-off behavior of jet diffusion flames due to the change of some critical parameters such as laminar flame speed. In this work, experiments are conducted in a large pressure-controllable chamber of 3 m (width) × 2 m (length) × 2 m (height) at different sub-atmospheric pressures of 60 kPa, 70 kPa, 80 kPa, 90 kPa as well as at normal pressure of 100 kPa. Axisymmetric turbulent jet diffusion flames are produced by nozzles with diameters of 4 mm, 5 mm and 6 mm using propane as fuel. It is revealed that the lift-off height increases as the pressure decreases and being much higher than that in normal pressure condition. The laminar flame speed with its dependency on pressure is introduced to interpret such behavior based on classic Kalghatgi model. It is found theoretically that the lift-off height has a power law dependency on pressure by P1−n, where n is overall reaction order of the fuel which is usually larger than 1 indicating a negative power law function with pressure (for example p−0.75 for propane as n = 1.75) as well verified by the experimental correlation. Finally, a global model is proposed by including such pressure dependency function into the Kalghatgi model, which is shown to well collapse the experimental results of lift-off heights of different sub-atmospheric pressures. 相似文献
14.
A detailed computational study was performed to understand the effects of the flame structure on the formation and destruction of soot precursors during ethylene combustion. Using the USC Mech Version II mechanism the contributions of different pathways to the formation of benzene and phenyl were determined in a wide domain of Zst values via a reverse-pathway analysis. It was shown that for conventional ethylene-air flames two sequential reversible reactions play primary roles in the propargyl (C3H3) chemistry, namely
(1) 相似文献
15.
Experimental study on velocity characteristics of recirculation zone in humid air non-premixed flame
To examine the effect of the flow field within the recirculation zone on flame structure, the characteristic velocity fields
of methane/humid air flame in non-premixed combustion behind a disc bluff-body burner were experimentally studied by particle
image velocimeter (PIV).The results show that two stagnation points exist on the centerline in the recirculation zone flame.
However, the distance of the two stagnation points in humid air combustion shortens, and the minimal dimensionless velocity
increases compared with the conventional nonhumid air combustion. In addition, the positional curves of the minimal velocities
can be partitioned into three phases representing three different flame patterns. The analysis of axial minimal velocities
on the centerline and their positions under different co-flow air velocity conditions reveals that fuel-to-air velocity ratio
is the crucial parameter that governs humid air combustion flame characteristics.
__________
Translated from Journal of Shanghai Jiaotong University, 2007, 41(3): 357–360, 365 [译自: 上海交通大学学报] 相似文献
16.
Yan-Huan Jiang Guo-Xiu Li Hong-Meng Li Lei Li Guo-Peng Zhang 《International Journal of Hydrogen Energy》2018,43(18):9022-9035
To investigate the effect of flame inherent instabilities on the flame structural characteristics of H2/CO/air mixtures, experiments were conducted in a constant combustion bomb at various hydrogen fraction and equivalence ratio at room pressure and temperature. Wavelet transform was adopted to decompose the disturbances with different scales in the flame front. To study quantitatively the flame geometric structure characteristics, the maximum and minimum fluctuation radius growth rate, fluctuation range growth rate and energy of decomposition component were defined. The results indicated that with the flame development the disturbances at different scales all get greatly promotion. The higher the scale of the decomposition, the greater the amplitude and the energy of the disturbances. The disturbances at lower decomposition scales are the dominant component of the flame geometric structure characteristics; the ones at higher decomposition scales have a significance influence on the flame local geometric structure characteristics. When the flame development approached to a certain degree, the fluctuation range growth rate increased with the flame development. With the decrease of the equivalence ratio or the increase of hydrogen fraction, the thermal-diffusive instability enhances, leading to an increase of the fluctuation range growth rate and the relative energy of the approximate component at decomposition scale nine. 相似文献
17.
A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion 总被引:1,自引:0,他引:1
The flame index was originally proposed by Yamashita et al. as a method of locally distinguishing between premixed and non-premixed combustion. Although this index has been applied both passively in the analysis of direct numerical simulation data, and actively using single step combustion models, certain limitations restrict its use in more detailed combustion models. In this work a general flamelet transformation that holds in the limits of both premixed and non-premixed combustion is developed. This transformation makes use of two statistically independent variables: a mixture fraction and a reaction progress parameter. The transformation is used to produce a model for distinguishing between premixed and non-premixed combustion regimes. The new model locally examines the term budget of the general flamelet transformation. The magnitudes of each of the terms in the budget are calculated and compared to the chemical source term. Determining whether a flame burns in a premixed or a non-premixed regime then amounts to determining which sets of these terms most significantly contribute to balancing the source term. The model is tested in a numerical simulation of a laminar triple flame, and is compared to a recent manifestation of the flame index approach. Additionally, the model is applied in a presumed probability density function (PDF) large eddy simulation (LES) of a lean premixed swirl burner. The model is used to locally select whether tabulated premixed or tabulated non-premixed chemistry should be referenced in the LES. Results from the LES are compared to experiments. 相似文献
18.
A mathematical model for the combustion in air of a single entrained spherical coal particle, 30 μm in diameter, has been developed incorporating thermogravimetric analysis data of Whitwick coal. The model is based on a set of ordinary differential equations, describing the reaction rates and the mass and heat transport processes. The system of equations was solved numerically. The combustion mechanism of the particle was described by locating the reaction zone at the solid surface, where gas-phase combustion of volatiles and heterogeneous reaction between gaseous oxygen and the carbon and hydrogen in the solid occurred in parallel. The combustion process was chemical-reaction-rate-controlled, with the oxygen partial pressure at the surface almost that of the surrounding bulk gas. The simulation results using this model, with the kinetic parameters for devolatilization and combustion derived from the experimental thermogravimetric data, are consistent with previously reported combustion lifetimes of approximately 1 s, for particles of this size and rank. They are also consistent with the anticipation that higher ambient gas temperatures should result in shorter burn-out times. The use of thermogravimetric data in the modelling of the combustion of small particles of these low-rank coals is a potentially valuable method for characterization of feedstocks for pulverized coal-fired boilers. © 1998 John Wiley & Sons, Ltd. 相似文献
19.
Fire dynamics simulations of a 7.1-cm buoyant turbulent diffusion flame were performed using a mixture-fraction-based combustion model. In our previous work, good agreement between the measured and the calculated fire flow field was achieved with carefully selected domain and grid sizes using a Lagrangian thermal-element combustion model. The Lagrangian thermal-element model exhibits qualitative as well as quantitative differences in the measured and calculated temperature profiles in the flame zone. The number of Lagrangian thermal elements must be carefully selected and the model is not designed to provide insights into the species distributions in the fire. To address these issues, a mixture-fraction-based combustion model was used in the present work. The domain and grid size dependence using this model are documented. Comparisons between the measured and the calculated velocities, mixture fractions and temperatures show that the mixture-fraction-based combustion model captures the qualitative and quantitative fire behavior very well. 相似文献
20.
Naoto YasudaTohru Tsuchiya Shino SasakiNoriyuki Okinaka Tomohiro Akiyama 《International Journal of Hydrogen Energy》2011,36(14):8604-8609
In this paper, we describe the self-ignition combustion synthesis (SICS) of LaNi5 utilizing the hydrogenation heat of metallic calcium at different hydrogen pressures, and focus on the effect of hydrogen pressure on the ignition temperature and the initial activation of hydrogenation. In the experiments, La2O3, Ni, and Ca were dry-mixed, and then heated at 0.1, 0.5, and 1.0 MPa of hydrogen pressure until ignition due to the hydrogenation of calcium. The products were recovered after natural cooling for 2 h. The results showed that the ignition temperature lowered with hydrogen pressure. The products changed from bulk to powder with hydrogen pressure. This was probably caused by volume expansion due to hydrogenation at higher pressure. The product obtained at 1.0 MPa showed the highest hydrogen storage capacity under an initial hydrogen pressure of 0.95 MPa. The results of this research can be applied as an innovative production route for LaNi5 without the conventional melting of La and Ni. 相似文献