首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 (12) kg d for the Ge (Si) targets after cuts, averaged over recoil energies 10-100 keV for a weakly interacting massive particle (WIMP) mass of 60 GeV/c2. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10(-43) cm2 from Ge and 3 x 10(-42) cm2 from Si, for a WIMP mass of 60 GeV/c2. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results and constrains predictions of supersymmetric models.  相似文献   

2.
The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV/c2 WIMP mass and, at >75% C.L., the entire 3sigma allowed region for the WIMP signal reported by the DAMA experiment.  相似文献   

3.
We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from weakly interacting massive particles (WIMPs) with masses below ~10 GeV/c(2). This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c(2) and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.  相似文献   

4.
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.  相似文献   

5.
The Korea Invisible Mass Search (KIMS) experiment presents new limits on the weakly interacting massive particle (WIMP)-nucleon cross section using data from an exposure of 3409 kg.d taken with low-background CsI(Tl) crystals at the Yangyang Underground Laboratory. The most stringent limit on the spin-dependent interaction for a pure proton case is obtained. The DAMA signal region for both spin-independent and spin-dependent interactions for the WIMP masses greater than 20 GeV/c2 is excluded by the single experiment with crystal scintillators.  相似文献   

6.
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10??? cm2 for 55 GeV/c2 WIMPs at 90% confidence level. Below 20 GeV/c2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.  相似文献   

7.
In the mixed spin-scalar coupling approach the data from HDMS (Heidelberg Dark Matter Search) experiments performed in the years 1996, 1997, 2001–2003 both with natural Ge and with enriched 73Ge were simultaneously analyzed. This analysis together with a new procedure for background identification and subtraction from the measured 73Ge spectrum allowed us to obtain a significant (about one order of magnitude) improvement for the limits on the WIMP-neutron spin-dependent coupling. As a result, the HDMS experiment is now giving the most sensitive limits on the WIMP-neutron spin coupling for WIMP masses larger than 60–65 GeV/c 2. The text was submitted by the authors in English.  相似文献   

8.
We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.  相似文献   

9.
The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, weakly interacting massive particles (WIMPs) scatter into an excited state, split from the ground state by an energy δ comparable to the available kinetic energy of a galactic WIMP. We note that for large splittings δ the dominant scattering at DAMA can occur off of thallium nuclei, with A~205, which are present as a dopant at the 10(-3) level in NaI(Tl) crystals. For a WIMP mass mχ≈100 GeV/c2 and δ≈200 keV, we find a region in δ-mχ-parameter space which is consistent with all experiments. These parameters, in particular, can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.  相似文献   

10.
XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.  相似文献   

11.
杨丽桃  李浩斌  岳骞  康克军  程建平  李元景  王子敬  M.Agartioglu  安海鹏  常建平  陈景瀚  陈云华  邓智  杜强  宫辉  何力  胡津纬  胡庆东  黄瀚雄  贾历平  江灏  李红  李荐民  李金  李霞  李学潜  李玉兰  林枫凯  林兴德  刘书魁  刘仲智  马豪  马菁露  潘辉  任杰  阮锡超  B.Sevda  Vivek Sharma  申满斌  Lakhwinder Singh  Manoj Kumar Singh  唐昌建  唐维优  田阳  王继敏  王力  王青  王轶  吴世勇  吴玉成  幸浩洋  徐音  薛涛  杨松伟  易难  喻纯旭  于海军  岳剑峰  曾雄辉  曾鸣  曾志  张云华  赵明刚  赵伟  周济芳  周祖英  朱敬军  朱忠华 《中国物理C(英文版)》2018,(2)
We report results of a search for light weakly interacting massive particle(WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory(CJPL). Constraints on WIMP-nucleon spin-independent(SI) and spin-dependent(SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV.  相似文献   

12.
The results of a neutrino experiment that involved 24.12 yr of live time of observation of muons from the lower Earth’s hemisphere with the aid of the Baksan Underground Scintillator Telescope are presented. In the problem of searches for a signal from the annihilation of dark matter in the Sun, an upper limit on the cross section for the elastic scattering of a weakly interacting massive particle (WIMP) on a nucleon was obtained at a 90% confidence level from an analysis of data accumulated within 21.15 yr of live time of observation. A neutralino in a nonminimal supersymmetric theory was considered for a WIMP. The best limit at the Baksan Underground Scintillator Telescope on the cross section for spin-dependent neutralino interactionwith a proton corresponds to 3×10?4 pb for the neutralino mass of 210 GeV/c 2. This limit is three orders of magnitude more stringent than similar limits obtained in experiments that detected directly WIMP scattering on target nuclei.  相似文献   

13.
New limits are presented on the cross section for weakly interacting massive particle (WIMP) nucleon scattering in the KIMS CsI(T?) detector array at the Yangyang Underground Laboratory. The exposure used for these results is 24?524.3 kg·days. Nuclei recoiling from WIMP interactions are identified by a pulse shape discrimination method. A low energy background due to alpha emitters on the crystal surfaces is identified and taken into account in the analysis. The detected numbers of nuclear recoils are consistent with zero and 90% confidence level upper limits on the WIMP interaction rates are set for electron equivalent energies from 3 to 11 keV. The 90% upper limit of the nuclear recoil event rate for 3.6-5.8 keV corresponding to 2-4 keV in NaI(T?) is 0.0098 counts/kg/keV/day, which is below the annual modulation amplitude reported by DAMA. This is incompatible with interpretations that enhance the modulation amplitude such as inelastic dark matter models. We establish the most stringent cross section limits on spin-dependent WIMP-proton elastic scattering for the WIMP masses greater than 20 GeV/c2.  相似文献   

14.
Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20 GeV/c2.  相似文献   

15.
DEAP-3600 is a single-phase liquid-argon dark matter detector that at time of writing is cooling down in preparation for filling at the SNOLAB facility near Sudbury, Ontario, Canada. DEAP-3600 is designed and constructed to achieve a sensitivity of 10?46cm2 for a WIMP-nucleon cross section for a 100 GeV WIMP. The steps taken in design and construction to achieve the ultra-low backgrounds required for such a sensitive WIMP search are reviewed.  相似文献   

16.
《中国物理C(英文版)》2020,44(12):125001-125001-17
We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment, including all data from March 2016 to August 2018. No significant excess of events is identified above the expected background. Upper limits are set on the spin-independent dark matter-nucleon interactions. The lowest 90% confidence level exclusion on the spin-independent cross section is 2.2 × 10?46 cm2 at a WIMP mass of 30 GeV/c2.  相似文献   

17.
We argue that current neutron star observations exclude asymmetric bosonic noninteracting dark matter in the range from 2 keV to 16 GeV, including the 5-15 GeV range favored by DAMA and CoGeNT. If bosonic weakly interacting massive particles (WIMPs) are composite of fermions, the same limits apply provided the compositeness scale is higher than ~1012 GeV (for WIMP mass ~1 GeV). In the case of repulsive self-interactions, we exclude the large range of WIMP masses and interaction cross sections which complements the constraints imposed by observations of the Bullet Cluster.  相似文献   

18.
SNO measurements strongly constrain the central temperature of the Sun, to within a precision of much less than 1%. This result can be used to probe the parameter space of supersymmetric dark matter. In this first analysis we find a lower limit for the weakly interacting massive particle (WIMP) mass of 60 GeV. Furthermore, in the event that WIMPs create a quasi-isothermal core, they will produce a peculiar distribution of the solar neutrino fluxes measured on Earth. Typically, a WIMP with a mass of 100 GeV and annihilation cross section of 10(-34) cm(3)/sec will decrease the neutrino predictions, by up to 4% for the Cl, by 3% for the heavy water, and by 1% for the Ga detectors.  相似文献   

19.
We present a search for excited and exotic electrons (e(*)) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb(-1) of data collected in pp collisions at sqrt[s] = 1.96 TeV with the Collider Detector at Fermilab II detector. No signal above standard model expectation is seen for associated ee(*) production. We discuss the e(*) sensitivity in the parameter space of the excited electron mass M(e(*)) and the compositeness energy scale Lambda. In the contact interaction model, we exclude 132 GeV/c(2)相似文献   

20.
The signals observed at the direct detection experiments DAMA, CoGeNT and CRESST could be explained by light WIMPs with sizeable spin-independent cross sections with nucleons. The capture and subsequent annihilation of such particles in the Sun would induce neutrino signals in the GeV range which may be observed at Super-Kamiokande. We determine the rate of upward stopping muons and fully contained events at Super-Kamiokande for various possible WIMP annihilation channels. This allows us to provide strong constraints on the cross section of WIMPs with nucleons. We find that the DAMA and CoGeNT signals are inconsistent with standard thermal WIMPs annihilating dominantly into neutrino or tau pairs. We also provide limits for spin-dependent WIMP nucleus scattering for masses up to 80 GeV. These exclude the DAMA favored region if WIMPs annihilate even subdominantly into neutrinos, taus, bottoms or charms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号