首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of crack deviation by an interface modifies considerably the behaviour of bimaterials fracture. Their fracture resistance is highly affected by the difference of the elastic properties of the bonded materials. In this work, the finite element method is applied to analyze the behaviour of a crack emanating from semicircular notch root growing in interface ceramic/metal composites and perpendicularly to this interface. The obtained results showed that the crack grew to interface from harder material, its energy decreased at the approach of the interface, in this case was retarded; an inverse phenomenon occurs if the crack is propagated towards a lower strength material and its energy increases, it has tendency to accelerate. The effects of geometry on the crack deflection near the interface are also discussed.  相似文献   

2.
This paper deals with the influence of matrix cracks on the failure mode of bimaterial systems and composite materials. In order to investigate such an influence, the stress field near a crack embedded into the more yielding material and propagating perpendicularly to the interface, has been analyzed by using systematic numerical simulations. Such analysis has shown that the crack propagation give rises to transversal stresses that can damage the reinforcing materials when this has low modulus, as glass fibers, or low transversal strength, such as carbon fibers. Moreover, the longitudinal stress concentration can damage the reinforcing material only if this has high stiffness, as in the case of aramid and carbon fibers.Also, the numerical results have permitted to implement simple formulas that allows the user an accurate evaluation of the SIF as well as to predict possible debonding or fiber splitting phenomena. Finally, the SIFs evaluated numerically have been corroborated by experimental tests carried out by using an efficient procedure based on RGB digital photoelasticity.  相似文献   

3.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

4.
Deflection of a crack at the bimaterial interface is the initial mechanism required for obtaining enhanced toughness in bimaterial system. In this paper, a criterion is presented to predict the competition between crack deflection and penetration at the interface, using an energy release rate criterion. The finite element methods are used to calculate the strain energy release rates at the crack tip of alumina–metal bimaterial that either deflect or penetrate at the interface as a function of elastic mismatch and length of the deflected or penetrated crack. The effects of the elastic properties of two bonded materials were highlighted in order to evaluate the conditions for the crack deflection by the interface as well as the distance between the crack tip and the interface.  相似文献   

5.
In this paper, a self-consistent boundary element method is introduced to predict overall properties of a cracked bimaterial plate. The boundary element (BE) formulation is developed based on Green's function for displacement discontinuity of a bimaterial solid and potential variational principles. The self-consistent method is then introduced into the BE formulation to provide an effective means for estimating overall material constants of a bimaterial solid weakened by cracks. Numerical results for a bimaterial plate with cracks are presented to illustrate the application of the proposed self-consistent BE formulation.  相似文献   

6.
The hybrid time-domain boundary element method (BEM), together with the multi-region technique, is applied to simulate the dynamic process of crack deflection/ penetration at an interface in a bi-material. The whole bi-material is divided into two regions along the interface. The traditional displacement boundary integral equations (BIEs) are employed with respect to the exterior boundaries; meanwhile, the non-hypersingular traction BIEs are used with respect to the part of the crack in the matrix. Crack propagation along the interface is numerically modelled by releasing the nodes in the front of the moving crack tip and crack propagation in the matrix is modeled by adding new elements of constant length to the moving crack tip. The dynamic behaviours of the crack deflection/penetration at an interface, propagation in the matrix or along the interface and kinking out off the interface, are controlled by criteria developed from the quasi-static ones. The numerical results of the crack growth trajectory for different inclined interface and bonded strength are computed and compared with the corresponding experimental results. Agreement between numerical and experimental results implies that the present time-domain BEM can provide a simulation for the dynamic propagation and deflection of a crack in a bi-material.  相似文献   

7.
The fracture behavior of a composite/adhesive/steel bonded joint was investigated by using double cantilever beam specimens. A starter crack is embedded at the steel/adhesive interface by inserting Teflon tape. The composite adherend is a random carbon fiber reinforced vinyl ester resin composite while the other adherend is cold rolled steel. The adhesive is a one-part epoxy that is heat cured. The Fernlund-Spelt mixed mode loading fixture was employed to generate five different mode mixities. Due to the dissimilar adherends, crack turning into the adhesive (or crack kinking) associated with joint failure, was observed. The bulk fracture toughness of the adhesive was measured separately by using standard compact tension specimens. The strain energy release rates for kinking cracks at the critical loads were calculated by a commercial finite element analysis software ABAQUS in conjunction with the virtual crack closure technique. Two fracture criteria related to strain energy release rates were examined. These are (1) maximum energy release rate criterion (Gmax) and, (2) mode I facture criterion (GII = 0). They are shown to be equivalent in this study. That is, crack kinking takes place at the angle close to maximum G or GI (also minimum GII, with a value that is approximately zero). The average value of GIC obtained from bulk adhesive tests using compact tension specimens is shown to be an accurate indicator of the mode I fracture toughness of the kinking cracks within the adhesive layer. It is concluded that the crack in tri-material adhesively bonded joint tends to initiate into the adhesive along a path that promotes failure in pure mode I, locally.  相似文献   

8.
The displacement fields near the tip of a crack in a bimaterial joint under mixed-mode loading have been investigated by using a highly sensitive moiré interferometry technique. With a scheme adopted for data reduction, the study find that the near-tip displacements due respectively to opening and slipping loads are non-coupled and separable. The study on the parameters characteristic of the crack-tip deformation include: (1) the strength of stress singularity; (2) the angular distribution; and (3) the stress intensity factors KI and KII. The characteristic parameters determined experimentally are compared with the theoretical ones for the problem given by Zak and Williams [J. Appl. Mech. 30 (1963) 142], and Chen [Eng. Fract. Mech. 49 (4) (1994) 517].  相似文献   

9.
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris’ law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena.  相似文献   

10.
In the present investigations a series of fatigue crack growth experiments has been conducted using thin-walled, hollow cylinders with a notch. The cylinders are made of fine-grained steel S460N. Cyclic tension-compression, torsion and proportional as well as non-proportional combinations of both loadings have been applied. For these experiments the crack-initiation locations and the crack growth lives as well as the crack growth curves and the crack paths have been identified. Depending on the loading type initiation of two to four cracks at different positions of the notch has been observed. The location of crack-initiation correlates well with the location of the maximum notch root stress amplitude calculated assuming elastic material behavior. The crack propagation lives vary depending on the type of loading. They are slightly longer under non-proportional loading than under proportional loading.  相似文献   

11.
We investigated the asymptotic problem of a kinked interface crack in an orthotropic bimaterial under in‐plane loading conditions. The stress intensity factors at the tip of the kinked interface crack are described in terms of the stress intensity factors of the interface crack prior to the kink combined with a dimensionless matrix function. Using a modified Stroh formalism and an orthotropy rescaling technique, the matrix function was obtained from the solutions of the corresponding problem in transformed bimaterial. The effects of orthotropic and bimaterial parameters on the matrix function were examined. A reduction in the number of dependent material parameters on the matrix function was made using the modified Stroh formalism. Moreover, the explicit dependence of one orthotropic parameter on the matrix function was determined using an orthotropic rescaling technique. The effects of the other material parameters on the matrix function were numerically examined. The energy release rate was obtained for a kinked interface crack in an orthotropic bimaterial.  相似文献   

12.
Inter-fibre failure under compression transverse to the fibres is studied at micromechanical level. Interfacial fracture mechanics concepts, associated to both the open model and the contact model, are applied. A numerical study is performed using the boundary element method aimed at explaining the origin and evolution of the damage at micromechanical level, considered as fibre-matrix interface cracks. Assuming that the damage starts as small debonds originated by shear stresses at the position where their maximum values are reached, it has been found that the crack shows different morphologies at both tips: an open one and a closed one with a large contact zone. Then the interface crack grows unstably in mixed mode only on the open tip side until this growth changes to stable, once the crack closes at this tip, with the generation of a contact zone.  相似文献   

13.
The interfacial fracture in bimaterial and functionally graded material (FGM) under impact loading conditions is investigated using experimental and numerical techniques that are valid for both type of interfaces. Experiments are conducted on epoxy based specimens in three point bend configuration and the complex SIF is measured using an electrical strain gage mounted close to the crack-tip. A complementary two-dimensional finite element simulation is performed using tup force and support reactions as input tractions, and the SIF-time history is determined using a displacement extrapolation technique. The experimentally determined SIF-histories match closely with numerical simulation up to the time of fracture initiation. The test results show that the mode-mixity remains nearly constant through out the test in both the materials, and the mixity values correspond to their respective static counterparts. The general dynamic response of the bimaterial and FGM specimens in terms of impact load, support reaction and the magnitude of complex SIF are comparable, and the mode-mixity is the parameter that distinguishes the graded interface from the bimaterial case.  相似文献   

14.
The analysis of a bimaterial medium with various notch opening angles has been carried out using boundary finite element method (BFEM) under arbitrary loading conditions. Introduced as novel method for stress concentration problems at geometrical discontinuities, cracks, bimaterial notches etc., the BFEM has been proved as numerically highly efficient. This has become more and more important because wedge type construction creates stress concentrations which may lead to crack initiation in many practical situations where multi-layered composite material is used, e.g. within aerospace, ship or automobile structures. So, the computational prediction of potential directions for crack initiation is essential for the knowledge of weak regions. All the analysis results are based on the hypothesis of Erdogan and Sih and have been verified by the well established finite element method. Results for potential crack initiation angles of both homogeneous and bimaterial media are presented with multiple examples of different wedge angles and different loading combinations.  相似文献   

15.
The problem of an anti-plane interface crack in a layered piezoelectric plate composed of two bonded dissimilar piezoelectric ceramic layers subjected to applied voltage is considered. It is assumed that the crack is either impermeable or permeable. An integral transform technique is employed to reduce the problem considered to dual integral equations, then to a Fredholm integral equation by introducing an auxiliary function. Field intensity factors and energy release rate are obtained in explicit form in terms of the auxiliary function. In particular, by solving analytically a resulting singular integral equation, they are determined explicitly in terms of given electromechanical loadings for the case of two bonded layers of equal thickness. Some numerical results are presented graphically to show the influence of the geometric parameters on the field intensity factors and the energy release rate.  相似文献   

16.
A continuum model is proposed to study the effects of deformation twinning on interface crack kinking in metal/ceramics layered materials. At the final stage of material failure, plastic work hardening exhausts and lattice rotation becomes main mechanism after competing with dislocation gliding. The crack-tip plasticity is established in terms of the second gradient of microrotation due to the coupling effect of the twins. The formed twinning structures not only shield the crack tip, but inhibit further dislocation emission by increasing the near-tip stress levels. A Dislocation-Free Zone (DFZ) can exist in the immediate vicinity of the tip. The model is based on the equivalence of the stresses derived from twin-based crack-tip plasticity, macroscopic plasticity and elasticity on the boundary. The two-parameter characterization of near-tip stress fields is used for the outer plastic zone to account for constraint effects. Crack kinking out of the interface follows the direction of the maximum flow stress from the crack-tip plasticity. The DFZ size and the crack-tip shielding ratio, as well as the kink angle, are obtained for various values of low hardening exponents and crack-tip constraints.  相似文献   

17.
This study presents an application of fracture mechanics to the interface crack between dissimilar materials. In this study, a concept of the stress intensity factors of an interface crack is discussed, and various types of specimens are tested experimentally for investigating the mixed mode fracture toughness criterion of an interface crack. The fracture toughness based on the stress intensity factors of an interface crack is decided by the fracture test and the boundary element analysis using the contour integral method. The mixed mode fracture toughness criterion is successfully characterized by the stress intensity factors of an interface crack.  相似文献   

18.
A numerical study of the fundamental problem of a pressurized penny-shaped crack at the interface of two dissimilar half spaces is carried out allowing for the possibility of frictionless contact between crack faces. A new, highly accurate axi-symmetric formulation of the boundary element method (BEM) for the solution of elastic contact problems is employed. The correctness and accuracy of available predictions of different kinds for several key characteristics of the solution of this problem are checked. First, comparison of the BEM results for the near-tip contact length shows a very good agreement with some existing predictions. Second, the global solution obtained by BEM is compared with existing asymptotic solutions, obtained with both the open and the frictionless contact models. BEM results show that at the closest neighborhood to the crack tip the global solution of the problem is governed by the first term of the asymptotic solution of the frictionless contact model (up to a distance of the order of a fraction of the near-tip contact length). After a small transition region, in an adjacent surrounding zone whose extent is almost independent of the near-tip contact length, the global solution of the problem is governed by the first term of the asymptotic solution of the open model. As a result of the comparison presented, the regions in which the classical fracture parameters, stress intensity factor (SIF) and energy release rate, can be accurately obtained from the global numerical solution of a crack of this kind have been determined. Third, BEM results and previous estimations show certain discrepancies with a recently published closed form solution of the near-tip contact length and the mode II SIF of the frictionless contact model. A new closed form expression of this mode II SIF, derived from the asymptotic solution of the open model, is proposed in this paper.  相似文献   

19.
An experimental investigation was conducted to study the nature of intersonic crack propagation along a bimaterial interface. A single edge notch/crack oriented along a polymer/metal interface was loaded predominantly in shear by impacting the specimen with a high velocity projectile fired from a gas gun. The stress field information around the propagating crack tip was recorded in real time by two different optical techniques--photoelasticity and coherent gradient sensing, in conjunction with high speed photography. Intersonic cracks on polymer/metal interfaces were found to propagate at speeds between the shear wave speed (cs) and of the polymer. The nature of the crack tip fields during subsonic/intersonic transition and the conditions governing this transition were examined. Experimental observations showed the formation of a crack face contact zone as the interfacial crack speed exceeds the Rayleigh wave speed of the polymer. Subsequently, the contact zone was observed to expand in size, shrink and eventually collapse onto the intersonic crack tip. The recorded isochromatic fringe patterns showed multiple Mach wave formation associated with such a scenario. It is found that the nature of contact zone formation as well as its size and evolution differ substantially depending on the sign of the opening component of loading.  相似文献   

20.
In this paper, the fatigue life, surface crack extension direction and crack growth rate in an elastic bar with a circular cross section are determined through experiments under cyclic torsion with axial static and cyclic tension/compression loading. The effects of the loading type, loading value and stress ratio on the crack growth behaviour are discussed. The results show that, under pure fatigue torsion loading, the crack extension direction is almost the same whatever the value of torsion loading. Under fatigue torsion with cyclic tension loading, it is found that the crack extension direction is mainly determined by the alternating parts of the stresses and is almost independent of the average parts of the stresses, whereas the fatigue life is obviously dependent on the average stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号