首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
热源温度对回热式室温磁Ericsson制冷循环性能的影响   总被引:1,自引:0,他引:1  
结合分子场理论和磁系统热力学知识,分析了回热式室温磁Ericsson制冷循环中热量和磁熵的关系,重点研究了热源温度对铁磁质磁Ericsson制冷循环性能的影响.利用典型室温磁制冷材料Gd进行了数值计算,得到以下结论:居里点附近是循环中的重要转折点,TL低于居里点会出现△Q<0的情况,一旦高于居里点则只有△Q>0的情况;TL越高对应的高温热源最大值THmax越高;相同高、低温热源条件下,磁场越大COP变化率越小.  相似文献   

2.
讨论并介绍了磁布雷顿制冷循环,指出磁布雷顿制冷循环具有某些独特优点,因而也是磁制冷新技术发展中不可忽视的一种重要循环方式。  相似文献   

3.
磁制冷发展现状及趋势:Ⅱ磁制冷技术   总被引:12,自引:0,他引:12  
简要介绍了磁制冷实现的原理,概括了磁制冷与气体压缩制冷的差异,比较了4种磁制冷循环的优缺点及适用场合,重点评述了室温温区磁制冷样机的研究进展,分析了磁制冷的关键技术,最后给出了磁制冷的潜在市场并展望了发展趋势。  相似文献   

4.
室温磁制冷研究新动态及应用   总被引:3,自引:0,他引:3  
室温磁制冷是磁制冷技术发展的必然趋势.本文介绍了近10年室温磁制冷研究的最新动态,分析了磁制冷循环理论研究的结果,详细说明了室温磁制冷材料和样机的新近成果,并对室温磁制冷的商业化应用前景进行了展望.  相似文献   

5.
应用有限时间热力学理论研究了顺磁质Ericsson制冷循环的优化,得出了最佳制冷率和制冷系数之间的基本优化关系,取得了一些有意义的结果。对这类实际制冷机优化设计具有指导意义。  相似文献   

6.
回热损失对磁斯特林制冷循环制冷率的影响   总被引:7,自引:0,他引:7  
从铁磁质的磁化强度一般表示式出发,探讨热阻和回热损失对磁斯特林制冷循环性能的影响,导出最大制冷率及其它性能参数。得到了结果适用于以顺磁质为工质的磁斯特林制冷循环。并指出在理想回热条件下的结论也适用于磁卡诺制冷循环。  相似文献   

7.
磁埃里克森制冷循环   总被引:1,自引:0,他引:1  
对磁埃里克森制冷循环作了简要的讨论和介绍.指出磁埃里克森制冷循环不具有理想(完全)的热,其制冷系数低于同样温度的卡诺制冷循环的制冷系数.但磁埃里克森制冷循环仍是磁制冷机研制中值得重视的一种循环方式.可存磁制冷技术劈展中起重要作用.  相似文献   

8.
渠满 《制冷》2013,32(1):37-42
磁制冷技术作为一种环保高效的新型制冷技术,受到了越来越多人的关注。与传统的气体压缩式制冷相比,磁制冷具有非常大的竞争力。随着材料科学和制冷循环理论等的不断发展,磁制冷技术必然有着广阔的发展前景。阐述了磁制冷技术的工作原理和典型磁制冷循环的研究进展情况,重点介绍了磁性材料以及活性蓄冷器的最新研究现状。  相似文献   

9.
室温磁制冷研究进展   总被引:21,自引:0,他引:21  
室温磁制冷技术是一项新的制冷技术,具有高效环保的特点,应用前景十分广阔,有望取代传统的蒸气压缩式制冷方法。阐述了磁热效应的原理,系统介绍了室温磁制冷中磁性材料、磁制冷循环、蓄冷器以及典型制冷机的发展情况,并对室温磁制冷的发展进行了展望。  相似文献   

10.
磁制冷技术是一种极具发展潜力的制冷技术,其具有节能、环保的特点.介绍了磁制冷的工作原理、磁性材料的选择与研究进展情况,磁制冷循环及磁制冷机的研究进展,并指出磁制冷技术发展需要解决的问题.  相似文献   

11.
Magnetic refrigeration (MR) based on the magnetocaloric effect (MCE) is a prime candidate for the next generation of cooling systems. The essential components of magnetic refrigeration are the magnetic field generator and the magnetocaloric material. Although, several permanent magnet systems (magnetic field sources) for MR have been developed, recent development in magnetic refrigeration technology has encouraged researchers all over the world to think about new and original systems. This paper aims to describe a new and original magnetic refrigeration system based on a simple principle of magnetism called the Halbach effect. The proposed system is running with rotating bar-shaped magnets. This structure provides the desired varying magnetic field to the magnetocaloric material. Several configurations for the proposed systems have been investigated and presented in this paper. The design and modeling have been accomplished by using the finite elements method.  相似文献   

12.
王从飞  高强  俞炳丰 《制冷》2004,23(1):27-32
室温磁制冷工质的研发是决定室温磁制冷技术发展的关键因素之一,后者是一种高效、环保的新型制冷技术,应用前景非常广泛.本文介绍了磁性工质用于制冷技术的原理、磁性工质的选择依据、室温磁制冷工质的发展现状及活性蓄冷器的相关技术,并对室温磁制冷工质技术的发展进行了展望.  相似文献   

13.
磁制冷器     
周子成 《制冷》2011,30(3):35-41
磁制冷是一种以磁热效应为基础的制冷方法.最早是由德国物理学家于1880年发现。早期用于制取极低的温度。近年来,室温磁制冷取得了较大的突破,已经研制出适合家用的磁制冷冰箱,同时由于它的制冷系数高和对大气的全球气候变暖影响小等优点,将成为一种很有发展前途的制冷方式。本文论述磁制冷和磁制冷冰箱的基本原理。  相似文献   

14.
磁制冷技术商品化开发的可行性探索   总被引:2,自引:0,他引:2  
裴秀英  徐来自 《制冷》2002,21(1):31-34
本文利用最新的国外资料 ,对新型的磁制冷技术商品化开发中存在的一些问题进行了探讨 ,指出磁制冷材料和热交换技术是磁制冷技术商品化开发的主要难关并提出了解决这两个难关的探索性方案。  相似文献   

15.
Based on the thermodynamic properties of a paramagnetic salt, an irreversible model of the magnetic Brayton refrigeration cycle is established, in which the working substance is a special paramagnetic material. The expressions of the important performance parameters, such as the coefficient of performance, refrigeration load and work input, are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The results obtained here may include the ones of the magnetic Brayton refrigeration cycle using the magnetic material obeyed the Curie law as the working substance, the magnetic Brayton refrigeration cycle without regeneration and the eversible magnetic Brayton refrigeration cycle. Therefore, the results obtained here have general significance and will be helpful to deeply understand the performance of a magnetic Brayton refrigeration cycle.  相似文献   

16.
Current models of Active Magnetic Regenerative Refrigeration (AMRR) cycles are not able to capture the effect of magnetic hysteresis and are therefore strictly limited to second order magnetic transition (SOMT) materials. The discovery of the giant magnetocaloric effect (GMCE) in first order magnetic transition (FOMT) materials has generated substantial interest. FOMTs yield large adiabatic temperature changes but also exhibit significant magnetic hysteresis. This work quantifies the effects of magnetic hysteresis. Thermodynamically, hysteresis is treated as a source of entropy generation that is proportional to the area swept by the hysteresis loop experienced locally by the material during one refrigeration cycle. The 1-D numerical model presented by Engelbrecht (2008) is modified to include magnetic hysteresis. Hysteresis losses are shown to be directly proportional to regenerator volume. Therefore, at large refrigeration capacity to volume ratios, AMRR beds using layered FOMT materials significantly outperform the same cycle using layered SOMT refrigerants.  相似文献   

17.
This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.  相似文献   

18.
The active magnetic regenerator (AMR) is an alternative refrigeration cycle with a potential gain of energy efficiency compared to conventional refrigeration techniques. The AMR poses a complex problem of heat transfer, fluid dynamics and magnetic field, which requires detailed and robust modeling. This paper reviews the existing numerical modeling of room temperature AMR to date. The governing equations, implementation of the magnetocaloric effect (MCE), fluid flow and magnetic field profiles, thermal conduction etc. are discussed in detail as is their impact on the AMR cycle. Flow channeling effects, hysteresis, thermal losses and demagnetizing fields are discussed and it is concluded that more detailed modeling of these phenomena is required to obtain a better understanding of the AMR cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号