首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial distribution of forests, meadows, arable land, water bodies and settlements in a catchment influences the spatial and temporal dynamics of evapotranspiration, surface runoff, soil moisture and ground water recharge. Four digital data sets from different sources were available for land cover distribution to be applied in a regional case study in the Ucker catchment with an area of about 2415 km2. The first data set was obtained from the German digital topographic data set “Atkis” and the second one from the federal German biotope mapping procedure “Biotoptypenkartierung”. In addition, Corine land cover data and a land cover obtained from a supervised, multitemporal classification of three Landsat-TM5-scenes from the year 2000 were used in our study. These data sets differ in spatial resolution and in information content and this leads to different areal proportions of the main land cover classes forests, meadows, arable land, water bodies and settlements. This has to be considered as an uncertainty in the land cover data. In our case study, we analyzed how and to which extent this uncertainty influences the outputs of a hydrological catchment model such as evapotranspiration and discharge. For the time period 1996-2001, meteorological time series were obtained from four meteorological stations and five additional precipitation stations. Measured daily discharge rates were available from two gauges located in the catchment. In the different land cover data sets, the proportions of arable land ranged from 52.7% to 61.7% of the catchment area and for forests from 19.5% to 24.6%. These different proportions showed only minor impacts with small differences below ±10 mm y−1 on the simulated annual rates of evapotranspiration and ground water recharge. In contrast, the simulated surface runoff rates showed a strong correlation to the amount of the settlement areas in the catchment. The highest proportion of settlements with 4.9% of the catchment area in comparison to the lowest proportion of 2.9% leads to an increase in the simulated surface runoff of 70%.  相似文献   

2.
Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994.Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts.These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in soil surface conditions and explain the major role played by the former on hydrological behavior of the upstream area and on rainfall partition between overland flow and infiltration. Therefore, to predict the water harvesting capacities in terms of blue water production of a farmed catchment in semi-arid areas it seems essential to consider precisely its land use and its temporal evolution related to management practices.  相似文献   

3.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

4.
5.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

The need for a detailed investigation of the Vea catchment water balance components cannot be overemphasized due to its accelerated land-cover dynamics and the associated impacts on the hydrological processes. This study assessed the possible consequences of land-use change scenarios (i.e. business as usual, BAU, and afforestation for the year 2025) compared to the 2016 baseline on the Vea catchment’s water balance components using the Soil and Water Assessment Tool (SWAT) model. The data used include daily climate and discharge, soil and land use/land cover maps. The results indicate that the mean annual water yield may increase by 9.1% under the BAU scenario but decrease by 2.7% under the afforestation scenario; actual evapotranspiration would decrease under BAU but increase under afforestation; and groundwater recharge may increase under both scenarios but would be more pronounced under the afforestation scenario. These outcomes highlight the significance of land-cover dynamics in water resource management and planning at the catchment.  相似文献   

7.
The C factor, representing the impact of plant and ground cover on soil loss, is one of the important factors of the Modified Universal Soil Loss Equation (MUSLE) in the Soil and Water Assessment Tool (SWAT) to model sediment yield. The daily update of C factors in SWAT was originally determined by land use types and plant growth cycles. This does not reflect the spatial variation of C values that exists within a large land use area. We present a new approach to integrate remotely sensed C factors into SWAT for highlighting the effect of detailed vegetative cover data on soil erosion and sediment yield. First, the C factor was estimated using the abundance of ground components extracted from remote sensing images. Then, the gridding data of the C factor were aggregated to hydrological response units (HRUs), instead of to land use units of SWAT. In the end, the C factor values in HRUs were integrated into SWAT to predict sediment yield by modifying the ysed subroutine. This substitution work not only increases the spatial variation of the C factor in SWAT, but also makes it possible to utilize other sources of C databases rather than those from the United States. The demonstration in the Dage basin shows that the modified SWAT produces reasonable results in water flow simulation and sediment yield prediction using remotely sensed C values. The Nash–Sutcliffe efficiency coefficient (ENS) and R2 for surface runoff range from 0·69 to 0·77 and 0·73 to 0·87, respectively. The coefficients ENS and R2 for sediment yield were generally above 0·70 and 0·60, respectively. The soil erosion risk map based on sediment yield prediction at the HRU level illustrates instructive details on spatial distribution of soil loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Problems related to scale continue to be at the forefront of research in hydrology. Past research into issues of scale has focused mainly on digital elevation model grid size, the appropriate number and size of sub‐areas for subdividing a watershed, parameter transferability between watersheds and appropriate scales for linking hydrological and general circulation models. Much less attention has been given to the effects of scale on the representation of land cover and hydrological model response. Recent studies with respect to changes in land cover and hydrologic response have tended to focus on the issue of land cover maturity and the conversion of land through agricultural and forestry practices. The focus of this study is to examine the impact of the level of detail at which land cover is represented in modelling the hydrological response of Wolf Creek Basin in northwest Canada. A grid‐based land cover map with a spatial resolution of 30 m is coarsened or smoothed using several common grid‐based methods of aggregating categorical data, including: pixel thinning, modal smoothing and modal aggregation. A majority rule method based on polygons is also applied to the 30 m base cover. The SLURP hydrologic model is calibrated for the base cover and used as a reference for comparing simulations for the coarsened or ‘generalized’ land cover maps. Results of the simulations are compared to examine the sensitivity of hydrologic response to generalized land cover information. Comparisons of the SLURP model runs for Wolf Creek suggest that reducing the level of detail of land cover information generally has a limited effect on hydrologic response at the outlet. However, results for averages of water balance components across the basin suggest that the local variability of hydrologic response is affected in general. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The National Airborne Field Experiment 2006 (NAFE’06) was conducted during a three week period of November 2006 in the Murrumbidgee River catchment, located in southeastern Australia. One objective of NAFE’06 was to explore the suitability of the area for SMOS (Soil Moisture and Ocean Salinity) calibration/validation and develop downscaling and assimilation techniques for when SMOS does come on line. Airborne L-band brightness temperature was mapped at 1 km resolution 11 times (every 1–3 days) over a 40 by 55 km area in the Yanco region and 3 times over a 40 by 50 km area that includes Kyeamba Creek catchment. Moreover, multi-resolution, multi-angle and multi-spectral airborne data including surface temperature, surface reflectance (green, read and near infrared), lidar data and aerial photos were acquired over selected areas to develop downscaling algorithms and test multi-angle and multi-spectral retrieval approaches. The near-surface soil moisture was measured extensively on the ground in eight sampling areas concurrently with aircraft flights, and the soil moisture profile was continuously monitored at 41 sites. Preliminary analyses indicate that (i) the uncertainty of a single ground measurement was typically less than 5% vol. (ii) the spatial variability of ground measurements at 1 km resolution was up to 10% vol. and (iii) the validation of 1 km resolution L-band data is facilitated by selecting pixels with a spatial soil moisture variability lower than the point-scale uncertainty. The sensitivity of passive microwave and thermal data is also compared at 1 km resolution to illustrate the multi-spectral synergy for soil moisture monitoring at improved accuracy and resolution. The data described in this paper are available at www.nafe.unimelb.edu.au.  相似文献   

12.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Here, we compared grid precipitation data — Climate Forecast System Reanalysis (CFSR) and WATCH Forcing Data methodology applied to ERA‐Interim (WFDEI) data — with Brazilian Weather Bureau (INMET) and Brazilian Water Agency (ANA) rain gauge data (n = 2027) for the period 1980–2010 in order to evaluate which grid data set better represents precipitation, and is thus more suitable for hydrological modelling of Brazilian water resources. We found that WFDEI outperformed CFSR according to three statistical indicators. We then applied and interpolated a simple bias correction to further improve WFDEI data before we used these data to model river discharge of the Tocantins catchment with the Soil and Water Assessment Tool (SWAT). Calibration (validation in parentheses; weighted averages of all gauges) had satisfactory statistical metrics: p‐factor = 0.52 (0.47); r‐factor = 0.84 (0.99); R2 = 0.78 (0.71); bR2 = 0.68 (0.47); NS = 0.70 (0.66); Pbias = ?4.5 (4.0). Finally, the calibrated SWAT model was used to assess the spatial distribution of the catchment's water resources. Annual green water flow (evapotranspiration) increased from the south‐east (640–840 mm yr?1) to north‐west (1140–1440 mm) of the Tocantins catchment, while green water storage (soil water content) increased from south (330–1070 mm) to north (2180–3290 mm). Blue water (water yield) had a less clear pattern, with lower values in the south and the central borders of the catchment (20–560 mm) and higher values along the central axis and the north (920–1460 mm). Our analysis suggested that WFDEI was an accurate representation of Brazilian precipitation. For large catchments, we therefore recommend the use of WFDEI instead of sparse and often missing rain gauge data in modelling Brazilian water resources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The Water Framework Directive (WFD) was established for the protection of surface waters (rivers, lakes, transitional and coastal waters) and ground waters in the European Union. The main environmental objective is to achieve and maintain a good status for all waters by the target date of 2015. Models which are able to address the majority of environmental objectives are proposed within the WFD to inform the management changes required to meet current water policy goals. The use of the Soil and Water Assessment Tool (SWAT) catchment model is widespread throughout the world, especially to support river basin management as required by the WFD. This paper provides a critical evaluation of the use of the model by placing model performance in the Axe catchment, UK, in the context of international performance of the model. Within the constraints of the available data, SWAT represents hydrology, sediment and ortho‐phosphorus concentration well for this heterogeneous catchment, but the representation of daily nitrogen concentration dynamics is poor. Temporal aggregation of model outputs from daily to monthly improved the performance metrics for all the river outputs, including nitrate. Wider review of SWAT studies showed widespread reporting of monthly performance metrics within the SWAT studies, despite the model operating at a daily time step. Poor performance for nitrate identified in this current study may be a significant factor in the choice to not report daily results. This demonstrates the importance of ascertaining the reasons for the use of temporal aggregation in modelling studies.  相似文献   

15.
Integrated dynamic water and chloride balance models with a catchment‐scale hydrological model (PRMS) are used to investigate the response of a terminal tropical lake, Lake Abiyata, to climate variability and water use practices in its catchment. The hydrological model is used to investigate the response of the catchment to different climate and land‐use change scenarios that are incorporated into the lake model. Lake depth–area–volume relationships were established from lake bathymetries. Missing data in the time series were filled using statistical regression techniques. Based on mean monthly data, the lake water balance model produced a good agreement between the simulated and observed levels of Lake Abiyata for the period 1968–83. From 1984 onwards the simulated lake level is overestimated with respect to the observed one, while the chloride concentration is largely underestimated. This discrepancy is attributed to human use of water from the influent rivers or directly from the lake. The simulated lake level and chloride concentration are in better agreement with observed values (r2 = 0·96) when human water use for irrigation and salt exploitation are included in the model. A comparison of the simulation with and without human consumption indicates that climate variability controls the interannual fluctuations and that the human water use affects the equilibrium of the system by strongly reducing the lake level. Sensitivity analysis based on a mean climatic year showed that, after prolonged mean climatic conditions, Lake Abiyata reacts more rapidly to an abrupt shift to wetter conditions than to dry conditions. This study shows the significant sensitivity of the level and salinity of the terminal Lake Abiyata to small changes in climate or land use, making it a very good ‘recorder’ of environmental changes that may occur in the catchment at different time scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

17.
DEMs as important input parameters of environmental risk assessment models are notable sources of uncertainties. To illustrate the effect of DEM grid size and source on model outputs, a widely used watershed management model, the Soil and Water Assessment Tool (SWAT), was applied with two newly available DEMs as inputs (i.e. ASTER GDEM Version 1, and SRTM Version 4.1). A DEM derived from 1:10,000 high resolution digital line graph (DLG) was used as a baseline for comparisons. Eleven resample resolutions, from 5 to 140?m, were considered to evaluate the impact of DEM resolution on SWAT outputs. Results from a case study in South-eastern China indicate that the SWAT predictions of total phosphorus and total nitrogen decreased substantially with coarser resample resolution. A slightly decreasing trend was found in the SWAT predicted sediment when DEMs were resampled to coarser resolutions. The SWAT predicted runoff was not sensitive to resample resolution. For different data sources, ASTER GDEM did not perform better than SRTM in SWAT simulations even it was provided with a smaller grid size and higher vertical accuracy. The predicted outputs based on ASTER GDEM and SRTM were similar, and much lower than the ones based on DLG. This study presents potential uncertainties introduced by DEM resolutions and data sources, and recommends strategies choosing DEMs based on research objects and maximum acceptable errors.  相似文献   

18.
Backscatter from multi-beam sonar (MBS) was used to discriminate ecologically relevant seabed characteristics based on 62 reference sites sampled with georeferenced video, sediment grab and rock dredge between 50 and 500 m water depth. A simple biotope characteristic of soft (unconsolidated) and hard (consolidated) was used to compare the acoustic backscatter data with the data on mega-epifauna and substrate type obtained from video and physical sampling. Substrate type of homogeneous reference sites was predicted by matching the backscatter incidence angle profile (0–70°) to that of a seabed scattering model. Referencing the seabed backscatter to a consistent incidence angle (40°) gave a metric with high spatial resolution (2.4–20 m), which minimised errors of range, incident angle and beam compensation. This simple metric provided a consistent approach to analyse and interpret the data and was strongly correlated with substrate type and faunal functional groups. The high resolution backscatter metric was a closer match to the small spatial scale of seabed patch lengths observed by video (50% <50 m).  相似文献   

19.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Topographic data are increasingly available at high resolutions (<10 m) over large spatial extents to support detailed flood inundation modeling and loss estimation analyses required for flood risk management. This paper describes ParBreZo, the parallel implementation of a two-dimensional, Godunov-type, shallow-water code, to address the computational demand of high-resolution flood modeling at the regional scale (102–104 km2). A systematic approach to unstructured grid partitioning (domain decomposition) is presented, and the Single Process Multiple Data (SPMD) paradigm of distributed-memory parallelism is implemented so the code can be executed on computer clusters with distributed memory, shared memory, or some combination of the two (now common with multi-core architectures). In a fully-wetted, load-balanced test problem, the code scales very well with a parallel efficiency of close to 100% on up to 512 processes (maximum tested). A weighted grid partitioning is used to partially address the load balancing challenge posed by partially wetted domains germane to flooding applications, where the flood extent varies over time, while the partitioning remains static. An urban dam-break flood test problem shows that weighted partitions achieve a parallel efficiency exceeding 70% using up to 48 processes. This corresponds to a 97% reduction in execution time so results are obtained in a matter of minutes, which is attractive for routine engineering analyses. A hurricane storm surge test problem shows that a 10 m resolution, 12 h inundation forecast for a 40 km length of coastline can be completed in under 2 h using 512 processors. Hence, if coupled to a hurricane forecast system capable of resolving storm surge, inundation forecasts could be made at 10 m resolution with at least a 10 h lead time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号