首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
传统K-means算法对初始聚类中心选择较敏感, 结果有可能收敛于一般次优解, 为些提出一种结合双粒子群和K-means的混合文本聚类算法。设计了自调整惯性权值策略, 根据最优适应度值的变化率动态调整惯性权值。两子群分别采用基于不同惯性权值策略的粒子群算法进化, 子代间及子代与父代信息交流, 共享最优粒子, 替换最劣粒子, 完成进化, 该算法命名为双粒子群算法。将能平衡全局与局部搜索能力的双粒子群算法与高效的K-means算法结合, 每个粒子是一组聚类中心, 类内离散度之和的倒数是适应度函数, 用K-means算法优化新生粒子, 即为结合双粒子群和K-means的混合文本聚类算法。实验结果表明, 该算法相对于K-means、PSO等文本聚类算法具有更强鲁棒性, 聚类效果也有明显的改善。  相似文献   

2.
针对K-means对初始聚类中心敏感和易陷入局部最优的缺点,提出了一种改进的基于粒子群的聚类算法.该算法结合基于密度和最大最小距离法来确定初始聚类中心,解决K-means对初始值敏感的问题;利用粒子群算法全局寻优能力强的优点,避免K-means陷入局部最优.通过对样本集各维属性的规范化处理,惯性权值采用凹函数递减,计算相异度矩阵,引入用群体适应度方差,进一步优化混合算法.实验结果表明,该算法具有更高的准确率和更强的收敛能力.  相似文献   

3.
聚类可以看成是寻找K个最佳聚类中心的过程。把一组聚类中心视为一个粒子,把总类内离散度和的倒数看成优化函数,采用变异概率作为粒子变异的条件,从而提高了粒子群的探索能力,克服粒子群收敛到局部最优值的缺点。因此通过变异粒子群算法能够找到最佳聚类中心。实验结果表明该算法有很好的稳定性,提高了聚类效果。  相似文献   

4.
针对标准粒子群优化(PSO)算法早熟收敛及易陷入局部极值的缺点,提出一种基于环形邻域的混沌粒子群优化算法RCPSO,并将其应用于求解数据聚类问题,而且通过在4个数据集上进行仿真实验验证了算法的有效性。实验表明,当邻域大小为整个种群规模的1/3时,基于静态邻域和基于随机邻域的算法在4个数据集上的整体聚类效果均达到最好。RCPSO算法利用适当规模的环形邻域提高了粒子群的全局寻优能力,并利用混沌因子增强了粒子收敛过程中种群的多样性,从而避免算法的早熟收敛。另外,与K-means、PSO、K-PSO及CPSO算法的实验结果进行比较表明,RCPSO算法在错误率方面表现得更好,因此该算法为聚类问题提供了一种切实有效的解决方法。  相似文献   

5.
针对K-均值聚类方法受初始聚类中心影响,容易陷入局部最优解的问题,提出一种基于量子粒子群算法的聚类方法,该方法引入了动态调整量子门旋转角和量子变异操作,采用改进的变异算子,使粒子群体保持品种的多样性和优良性,避免陷入局部最优,同时结合粒子群优化算法,增加粒子群的全局搜索能力。仿真实验表明该方法在全局寻优能力和收敛效率上都有所提高。  相似文献   

6.
针对基于粒子群优化的聚类算法容易陷入局部最优值的缺点,提出将量子行为粒子群优化应用于基因表达数据的聚类分析问题中。在新的聚类算法中采用了对粒子群的多样性控制,以提高算法的全局收敛性能;此外还在新算法中引入了类似于K均值聚类的操作步骤,用以提高算法整体的收敛速度。选择Rand指数和Silhouette指数作为聚类评价标准,对5个人工和实际的基因表达数据集合进行聚类实验分析表明,新算法和基于粒子群优化的聚类算法相比,具有较快的收敛速度,粒子多样性的控制能有效改善算法的全局收敛性能。和其他一些常用的聚类算法比较,也能够获得更好的聚类评价,聚类效果更好。  相似文献   

7.
针对粒子群优化算法容易陷于局部最优,且初始聚类中心选择对K-均值算法的影响较大,提出一种融合邻域扰动的简化粒子群K-均值初始优化聚类算法(ADPSO-IKM)。首先,根据 “集群度”思想实现优化初始聚类中心。其次,在粒子群算法公式中加入邻域扰动项,避免陷入局部最优,并且算法遵循自适应度优化学习策略增强全局搜索能力,进一步提高算法精度。通过仿真测试表明,提出的ADPSO-IKM算法能加快收敛速度,可防止粒子的早熟,收敛效果好并具有较好的稳定性。  相似文献   

8.
针对K-means聚类算法受初始类中心影响,聚类结果容易陷入局部最优导致聚类准确率较低的问题,提出了一种基于自适应布谷鸟搜索的K-means 聚类改进算法,并利用MapReduce编程模型实现了改进算法的并行化。通过搭建的Hadoop分布式计算平台对不同样本数据集分别进行10次准确性实验和效率实验,结果表明:(1)聚类的平均准确率在实验所采用的4种UCI标准数据集上,相比原始K-means聚类算法和基于粒子群优化算法改进的K-means聚类算法都有所提高;(2) 聚类的平均运行效率在实验所采用的5种大小递增的随机数据集上,当数据量较大时,显著优于原始K-means串行算法,稍好于粒子群优化算法改进的并行K-means聚类算法。可以得出结论,在大数据情景下,应用该算法的聚类效果较好。  相似文献   

9.
为改进传统K-means聚类算法中存在因随机选择初始质心而导致聚类结果不稳定且准确度低的缺点,提出基于改进量子旋转门人工鱼群算法的K-means聚类(IQAFSA)算法,通过动态更新量子旋转门的旋转角提高下一代更新方向准确度及更新速度。变异策略从传统的非门改为H门,既增加种群的多样性,又使全局搜索能力增强;最终使用所改进算法选取K-means的初始质心再进行聚类。通过UCI数据的测试以及在医学相关数据上的实验表明,提出的算法具有有效性,准确度较高且收敛速度较快。  相似文献   

10.
基于粒子对和极值优化的基因聚类混合算法研究   总被引:1,自引:1,他引:0  
针对粒子对算法存在过早陷入局部最优导致精度不是很高的问题,建议了一种新的基于粒子对(PPO)与极值优化(EO)混合算法。该算法利用PPO和EO的优点,借助K-means快速聚类的结果初始化其中一个粒子,并根据一定迭代次数在精英粒子对的迭代过程中引入EO算法,在保证算法收敛的同时避免后期过早陷入局部最优,从而提高聚类结果的精度。将混合算法应用于真实的基因表达数据。实验结果表明,混合算法比K-means和粒子对算法具有更好的聚类精度和稳定性。  相似文献   

11.
针对原始K-means聚类算法受初始聚类中心影响过大以及容易陷入局部最优的不足,提出一种基于改进布谷鸟搜索(CS)的K-means聚类算法(ACS-K-means)。其中,自适应CS(ACS)算法在标准CS算法的基础上引入步长自适应调整,以提高搜索精度和收敛速度。在UCI标准数据集上,ACS-K-means算法可得到比K-means、基于遗传算法的K-means(GA-K-means)、基于布谷鸟搜索的K-means(CS-K-means)和基于粒子群优化的K-means(PSO-K-means)算法更优的聚类质量和更高的收敛速度。将ACS-K-means聚类算法应用到南宁市青秀区“城管通”系统的城管案件热图的开发中,在地图上对案件地理坐标进行聚类并显示,应用结果表明,聚类效果良好,算法收敛速度快。  相似文献   

12.
针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点,提出一种基于K-means的人工蜂群(ABC)聚类算法。将改进的人工蜂群算法和K-means迭代相结合,使算法对初始聚类中心的依赖性和陷入局部最优解的可能性降低,提高了算法的稳定性。通过基于反向学习的初始化策略,增强了初始群体的多样性。利用非线性选择策略,改善了过早收敛问题,提高了搜索效率。通过对邻域搜索范围的动态调整,提高了算法收敛速度,增强了局部寻优能力。实验结果表明,该算法不仅克服了K-means算法稳定性差的缺点,而且具有良好的性能和聚类效果。  相似文献   

13.
为了提高图像分割的质量和效率,同时,针对粒子群优化算法(Particle Swarm Optimization, PSO)容易陷于局部最优和K-均值算法对初始聚类中心敏感的问题,本文将PSO和K-均值算法相结合,提出一种通过调整惯性权重和学习因子的优化算法。首先,对图像进行去噪预处理,并将处理后的颜色图像转换到HSV空间,以提高色彩质量。然后,改进粒子群算法中的惯性权重和学习因子公式及参数,避免陷入局部最优。最后,根据粒子的适应度切换到K-均值算法执行局部搜索,使聚类中心不断更新实现快速收敛。实验结果表明,在图像分割的过程中,改进的算法具有全局搜索能力强的优点,能够实现更快的收敛速度和更高的分割精度。  相似文献   

14.
针对K均值聚类算法存在的对初始值敏感且容易陷入局部最优的缺点,提出一种改进的混合蛙跳算法(SFLA)和K均值相结合的聚类算法。该算法通过混沌搜索优化初始解,变异操作生成新个体,在更新青蛙位置时,设计了一种新的搜索策略,提高了算法寻优能力;根据青蛙群体的适应度方差来确定K均值算法的操作时机,抑制早熟收敛。实验结果表明,改进的算法提高了聚类精度,在全局寻优能力和收敛速度方面具有优势。  相似文献   

15.
一种结合人工蜂群和K-均值的混合聚类算法   总被引:1,自引:1,他引:1  
传统的K-均值聚类算法虽然收敛速度快,但由于过度依赖初始聚类中心,算法的鲁棒性较差。为此,提出了一种改进人工蜂群算法与K-均值相结合的混合聚类方法,将改进人工蜂群算法能调节全局寻优能力与局部寻优能力的优点与K-均值算法收敛速度快的优点相结合,来提高算法的鲁棒性。实验表明,该算法不仅克服了传统K-均值聚类算法稳定性差的缺点,而且聚类效果也有了明显改善。  相似文献   

16.
在许多领域中,聚类是重要分析技术之一,如数据挖掘、模式识别和图像分析。针对K-means算法过度依赖初始聚类中心的选择而陷入局部最优的问题,提出了基于自适应步长的萤火虫划分聚类算法,简称ASFA。利用萤火虫算法的随机性和全局搜索性,来找到指定数量的初始簇中心,进一步利用K-means得到精确的簇划分。在萤火虫聚类优化算法中,采用自适应步长代替原有的固定步长,从而避免算法陷入局部最优,且能获得精度更高的解。为了提高算法性能,将改进的新算法用于不同规模大小的标准数据集中,实验结果表明,ASFA与K-means、GAK、PSOK对比显示更好的聚类性能和更好的稳定性和鲁棒性,与其他文献中算法相比,ASFA在寻优精度方面能取得更好的效果。  相似文献   

17.
空间数据挖掘是数据挖掘的一个研究分支。空间聚类分析是空间数据挖掘的一个重要的研究领域。传统的K-均值方法用于聚类具有收敛速度快、算法实现简单等特点,但容易陷入局部最优,并对初始解敏感。遗传算法是一种全局搜索算法,但是收敛速度较慢。提出一种改进的遗传算法进行聚类,该算法通过全局搜索与局部搜索相结合,取得较好效果。实验表明:文中提出的算法在聚类分析中搜索到全局最优解(或近似全局最优解)的能力要优于经典的K-均值聚类算法,且局部收敛速度和全局收敛性能较好。  相似文献   

18.
针对K-means算法处理海量数据存在严重的内存不足,提出利用MapReduce并行化K-means,但是普通的K均值存在收敛速度慢、易陷入局部最优和对初始聚类中心的选取等局限性,因此选择了经ACO改进过的ACO-K-means聚类算法。实验结果表明,经MapReduce并行化的ACO-K-means,不仅具有良好的加速比和扩展性,其收敛性以及聚类精度均得到了改善。  相似文献   

19.
基于高斯扰动的量子粒子群优化算法   总被引:1,自引:0,他引:1  
针对量子粒子群优化(QPSO)算法在优化过程中面临早熟问题,提出了在粒子的平均位置或全局最优位置上加入高斯扰动的QPSO算法,可以有效地阻止粒子的停滞,因此较容易地使粒子避免陷入局部最优。为了评估算法的性能,利用标准测试函数对标准PSO算法、QPSO算法以及基于高斯扰动的QPSO算法进行了比较测试。其结果表明,该算法具有较强的全局搜索能力和较快的收敛速度。  相似文献   

20.
在PSO算法的基础上提出的基于量子行为的QPSO算法,并将其应用到基因表达数据集上。QPSO基因聚类算法是将N条基因根据使TWCV(Total Within-Cluster Variation)函数值达到最小分到由用户指定的K个聚类中。根据K-means算法的优点,利用K-means聚类的结果重新初始化粒子群,结合QPSO和PSO的聚类算法提出了KQPSO和KPSO算法。通过在4个实验数据集上利用K-means、PSO、QPSO、KPSO、KQPSO 5个聚类算法得出的结果比较显示QPSO算法在基因表达数据分析上具有良好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号