首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lethal mutations in the 0.5 map unit region between dpy-5 and bli-4 on chromosome I in Caenorhabditis elegans were serially rescued using cosmid-containing transgenic strains. All the lethal mutations analyzed came from a set of 495 EMS-induced, sDp2-rescued lethals described previously. Germline transformation with cosmid DNA was used to create 25 transgenic strains bearing heritable extrachromosomal arrays. These arrays were used as small duplications for the fine-scale mapping of essential genes, via the rescue of lethal mutations. Lethal mutations in 13 essential genes have been phenotypically rescued, allowing the alignment of the genetic and physical maps in this region. Extrachromosomal arrays were found to be transmitted 2- to 7-fold less frequently in oocytes than in hermaphrodite sperm for 12 of the 16 arrays that were examined. Three of these strains showed a subsequent 4- to 13-fold increase in array stability in oocytes. This phenomenon may be influenced by cosmid sequences. Early mitotic loss of the arrays was observed in all 17 transgenic strains examined, suggesting that loss of the array can occur at any time during development when cell divisions are occurring. As a result of this work, 13 of the essential loci positioned between dpy-5 and bli-4 are anchored to the physical map, thereby providing links between the physical and genetic maps on average every 85 kb. Received: 8 May 1996 / Accepted: 27 January 1997  相似文献   

2.
Essential genes were identified in the 1.5-map unit dpy-5 unc-13 region of chromosome I in the Caenorhabditis elegans genome by rescuing lethal mutations using the duplication sDp2. In this paper, we report the mapping and complementation testing of lethal mutations, 45 of which identify 18 new, essential genes. This analysis brings the number of essential genes defined by the sDp2 rescue of lethal mutants to 97; 64 of these map between dpy-5 and unc-13. 61% of these essential genes are identified by more than one allele. Positioning of the mutations was done using the breakpoints of six duplications. The mutant phenotypes of 14 loci essential for fertility were characterized by Nomarski microscopy and DAPI staining. None of the mutants were rescued by wild-type male sperm. The cytological data showed that four genes produced mutants with defects in gonadogenesis, let-395, let-603, let-605 and let-610. Mutations in seven genes, let-355, let-367, let-384, let-513, let-544, let-545 and let-606, affected germ cell proliferation or gametogenesis. Mutants for the remaining three genes, let-370, let-599 and let-604, produced eggs that failed to develop or hatch, thereby acting as maternal effect lethals. We observed a nonrandom distribution of arrest phenotypes with regard to map position.  相似文献   

3.
Summary Essential genes have been identified in the 1.5 map unit (m.u.)dpy-14-unc-29 region of chromosome I inCaenorhabditis elegans. Previous work defined nine genes with visible mutant phenotypes and nine genes with lethal mutant phenotypes. In this study, we have identified an additional 28 essential genes with 97 lethal mutations. The mutations were mapped using eleven duplication breakpoints, eight deficiencies and three-factor recombination experiments. Genes required for the early stages of development were common, with 24 of the 37 essential genes having mutant phenotypes arresting at an early larval stage. Most mutants of a gene have the same time of arrest; only four of the 20 essential genes with multiple alleles have alleles with different phenotypes. From the analysis of complementing alleles oflet-389, alleles with the same time-of-arrest phenotype were classified as either hypomorphic or amorphic. Mutants oflet-605, let-534 andunc-37 have both uncoordinated and lethal phenotypes, suggesting that these genes are required for the coordination of movement and for viability. The physical and genetic maps in thedpy-14 region were linked by positioning two N2/BO polymorphisms with respect to duplications in the region, and by localizing the right breakpoint of the deficiencyhDf8 on the physical map. Using cross-species hybridization toC. briggsae, ten regions of homology have been identified, eight of which are known to be coding regions, based on Northern analysis and/or the isolation of cDNA clones.  相似文献   

4.
Essential genes were identified in the 1.5-map unit dpy-5 unc-13 region of chromosome I in the Caenorhabditis elegans genome by rescuing lethal mutations using the duplication sDp2. In this paper, we report the mapping and complementation testing of lethal mutations, 45 of which identify 18 new, essential genes. This analysis brings the number of essential genes defined by the sDp2 rescue of lethal mutants to 97; 64 of these map between dpy-5 and unc-13. 61% of these essential genes are identified by more than one allele. Positioning of the mutations was done using the breakpoints of six duplications. The mutant phenotypes of 14 loci essential for fertility were characterized by Nomarski microscopy and DAPI staining. None of the mutants were rescued by wild-type male sperm. The cytological data showed that four genes produced mutants with defects in gonadogenesis, let-395, let-603, let-605 and let-610. Mutations in seven genes, let-355, let-367, let-384, let-513, let-544, let-545 and let-606, affected germ cell proliferation or gametogenesis. Mutants for the remaining three genes, let-370, let-599 and let-604, produced eggs that failed to develop or hatch, thereby acting as maternal effect lethals. We observed a nonrandom distribution of arrest phenotypes with regard to map position. Received: 8 May 1996 / Accepted : 27 January 1997  相似文献   

5.
I L Johnstone  Y Shafi    J D Barry 《The EMBO journal》1992,11(11):3857-3863
Collagens are a family of proteins contributing to the body structure of eukaryotes. They are encoded by a large and diverse gene family in the nematode Caenorhabditis elegans but by only a few genes in vertebrates. We have studied mutant alleles of the C. elegans dpy-7 gene, one of a large group of genes whose mutant phenotype is altered body form and several of which have previously been shown to encode cuticular collagens. We made use of the C. elegans physical map to screen specifically for collagen genes in the region of the X chromosome to which dpy-7 maps. This yielded a wild-type collagen gene clone which we showed, by micro-injection, could repair the dpy-7 mutant phenotype in transgenic animals. We cloned the homologous sequence from four dpy-7 mutant strains and by sequence analysis identified a single mutation in each case. All four mutations result in the substitution of a glycine with a larger residue in the conserved Gly-X-Y collagen domains. Similar substitutions in vertebrate collagens cause the heritable brittle bone disorder osteogenesis imperfecta. Whereas the human mutations are dominant, the dpy-7 mutations are recessive, and this may reflect different levels of complexity of collagenous macromolecular structures in the two organisms.  相似文献   

6.
Summary The subject of this study is the organization of essential genes in the 2 map-unit unc-22 IV region of the Caenorhabditis elegans genome. With the goal of achieving mutational saturation of essential genes in this region, 6491 chromosomes mutagenized with ethyl methanesulfonate (EMS) were screened for the presence of lethal mutations in the unc-22 region. The genetic analysis of 21 lethal mutations in the unc-22 region resulted in the identification of 6 new essential genes, making a total of 36 characterized to date. A minimum of 49 essential genes are estimated to lie in this region. A set of seven formaldehyde-induced deficiencies of unc-22 and surrounding loci were isolated to facilitate the positioning of essential genes on the genetic and physical maps. In order to study essential genes at the molecular level, our approach was to rescue lethal mutations by the injection of genomic DNA in the form of cosmid clones into the germ-line of balanced heterozygotes carrying a lethal mutation. The cosmid clones containing let-56 and let-653 were identified by this method.  相似文献   

7.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

8.
A fine-structure genetic map has been constructed for ama-1 IV, an essential gene in Caenorhabditis elegans encoding the amanitin-binding subunit of RNA polymerase II. Sixteen EMS-induced recessive-lethal mutations have been positioned in the gene by determining their intragenic recombination frequencies with m118, a mutation that confers dominant resistance to alpha-amanitin. The 16 mutants, all isolated in the ama-1(m118) background, include 13 that are early larval lethals, and three that are mid-larval lethals, at 25 degrees. Six of the mutants exhibit temperature-dependence in the severity of their phenotype. Intragenic recombination between the lethal site and the parental resistance mutation was detected by means of resistance to amanitin. Recombinants were detected at frequencies as low as 2 X 10(-6). The segregation of the closely linked flanking markers, unc-17 and unc-5, revealed whether the lethal mutation was to the left or the right of m118. By adding the distances between the extreme left and right mutations, the ama-1 gene is estimated to be 0.011 map unit long, with m118 positioned 0.004 map unit from the left-most lethal mutation. To order the lethal mutations with respect to each other, viable heteroallelic strains were constructed using the free duplication, mDp1[unc-17(e113) dpy-13(+) ama-1(+)]. The heteroallelic strains were sensitive to amanitin, and recombination events between the lethal mutations were specifically selected by means of the dominant amanitin resistance encoded on the recombinant chromosome. The segregation of outside markers revealed the left-right order of the lethal mutations. The position of mutations within the gene is nonrandom. Functional domains of the ama-1 gene indicated by the various lethal phenotypes are discussed.  相似文献   

9.
A. M. Rose  D. L. Baillie 《Genetics》1980,96(3):639-648
In the nematode Caenorhabditis elegans mutants in the gene unc-15 (I) affect the muscle protein paramyosin (Waterston, Fishpool and Brenner 1977). We have characterized 20 ethyl methanesulfonate-induced mutations in essential genes closely linked to unc-15. These lethals defined 16 new complementation groups. In the 0.65 map-unit interval around unc-15 defined by dpy-14 and unc-56, seven newly identified genes have been mapped relative to five existing genes. At present, the average distance between genes in this region is approximately 0.05 map units. Two genes, unc-15 and unc-13, are only 0.025 map units apart. Partial fine-structure maps of alleles of these two genes have been constructed. This analysis of unc-15 and genes adjacent to it is the first in a series of genetic and biochemical studies directed towards understanding the control of unc-15 expression.  相似文献   

10.
We describe the molecular analysis of the dpy20 gene in Caenorhabditis elegans. Isolation of genomic sequences was facilitated by the availability of a mutation that resulted from insertion of a Tc1 transposable element into the dpy-20 gene. The Tc1 insertion site in the m474:: Tc1 allele was identified and was found to lie within the coding region of dpy-20. Three revertants (two wild-type and one partial revertant) resulted from the excision of this Tc1 element. Genomic dpy-20 clones were isolated from a library of wild-type DNA and were found to lie just to the left of the unc-22 locus on the physical map, compatible with the position of dpy-20 on the genetic map. Cosmid DNA containing the dpy-20 gene was successfully used to rescue the mutant phenotype of animals homozygous for another dpy-20 allele, e1282ts. Sequence analysis of the putative dpy-20 homologue in Caenorhabditis briggsae was performed to confirm identification of the coding regions of the C. elegans gene and to identify conserved regulatory regions. Sequence analysis of dpy-20 revealed that it was not similar to other genes encoding known cuticle components such as collagen or cuticulin. The dpy-20 gene product, therefore, identifies a previously unknown type of protein that may be directly or indirectly involved in cuticle function. Northern blot analysis showed that dpy-20 is expressed predominantly in the second larval stage and that the mRNA is not at all abundant. Data from temperature shift studies using the temperature-sensitive allele e1282ts showed that the sensitive period also occurs at approximately the second larval stage. Therefore, expression of dpy-20 mRNA and function of the DPY-20 protein are closely linked temporally.  相似文献   

11.
12.
By using a low-resolution macrorestriction map as the foundation (R. Majumder et al., J. Bacteriol. 176:1105–1112, 1996), an ordered cloned DNA map of the 3.2-Mb chromosome of the hypertoxinogenic strain 569B of Vibrio cholerae has been constructed. A cosmid library the size of about 4,000 clones containing more than 120 Mb of V. cholerae genomic DNA (40-genome equivalent) was generated. By combining landmark analysis and chromosome walking, the cosmid clones were assembled into 13 contigs covering about 90% of the V. cholerae genome. A total of 92 cosmid clones were assigned to the genome and to regions defined by NotI, SfiI, and CeuI macrorestriction maps. Twenty-seven cloned genes, 9 rrn operons, and 10 copies of a repetitive DNA sequence (IS1004) have been positioned on the ordered cloned DNA map.  相似文献   

13.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

14.
Novel nematode amber suppressors   总被引:8,自引:3,他引:5       下载免费PDF全文
Hodgkin J 《Genetics》1985,111(2):287-310
Nine amber suppressor mutations were isolated in the nematode Caenorhabditis elegans by reverting amber alleles of a sex-determining gene, tra-3. One suppressor maps to a known locus, sup-5 III , but the other eight map to three new loci, sup-21 X (five alleles), sup-22 IV (two alleles) and sup-23 IV (one allele). Amber alleles of tra-3 and of a dumpy gene, dpy-20, were used to measure the efficiency of suppression; the sup-21 and the sup-22 alleles were both shown to be heterogeneous and generally weaker suppressors than sup-5 alleles, which are homogeneous. The spectrum of mutations suppressed by a strong sup-21 allele, e1957, was investigated and compared to the spectra for the amber suppressors sup-5 III and sup-7 X, using amber alleles in 13 assorted genes. Some of the differences between these spectra may be due to limited tissue specificity in sup-21 expression.—Suppression of dpy-20 was used to show that the sex-linked suppressors sup-7 and sup-21 are not dosage compensated in male (XO) relative to hermaphrodite (XX).—Several uses of amber suppressors are critically discussed: for identifying null mutations, for varying levels of gene activity and for detecting maternal mRNA.  相似文献   

15.
The central gene cluster of chromosome III was one of the first regions to be sequenced by the Caenorhabditis elegans genome project. We have performed an essential gene analysis on the left part of this cluster, in the region around dpy-17III balanced by the duplication sDp3. We isolated 151 essential gene mutations and characterized them with regard to their arrest stages. To facilitate positioning of these mutations, we generated six new deficiencies that, together with preexisting chromosomal rearrangements, subdivide the region into 14 zones. The 151 mutations were mapped into these zones. They define 112 genes, of which 110 were previously unidentified. Thirteen of the zones have been anchored to the physical sequence by polymerase chain reaction deficiency mapping. Of the 112 essential genes mapped, 105 are within these 13 zones. They span 4.2?Mb of nucleotide sequence. From the nucleotide sequence data, 920 genes are predicted. From a Poisson distribution of our mutations, we predict that 234 of the genes will be essential genes. Thus, the 105 genes constitute 45% of the estimated number of essential genes in the physically defined zones and between 2 and 5% of all essential genes in C. elegans.  相似文献   

16.
The close linkage of the glnA gene with polA was exploited to construct a fine structure map of polA by means of generalized transduction with phage P1. Nine different polA- alleles were mapped by recombinational crosses. The results indicate a gene order consistent with previous observations (Kelley and Grindley 1976a; Murray and Kelley 1979). Three mutations, polA5, polA6 and polA12 map within the "carboxy-terminal" or "large-fragment" portion of the gene in unambiguous order. Four alleles, known to affect the "aminoterminal" portion of the gene, polA107, polA214, polA480ex and polA4113, appear to be closely linked with certain ambiguities in their exact order. All four of these mutations are known to alter the 5''→3'' exonuclease activity of DNA polymerase I and three of them result in the conditional lethal polA- phenotype. The polA1 nonsense mutation maps between these two groups in a position consistent with its known effect, production of an amber fragment that includes the 5''→3'' exonuclease. The final allele, resA1, is another nonsense mutation that maps at the extreme "amino-terminus" of the cistron.——A number of control experiments were conducted to determine the effects of polA- mutations on the P1-mediated recombinational event. These experiments indicated that abortive transduction occurs quite frequently, but the formation of abortive transductants and segregation of unselected transduced markers among daughter progeny is like that observed by other investigators. There was no evidence that any individual polA- allele behaved in an exceptional fashion during recombination.  相似文献   

17.

Key message

A high-density genetic map constructed with a wheat 55 K SNP array was highly consistent with the physical map of this species and it facilitated the identification of a novel major QTL for productive tiller number.

Abstract

Productive tiller number (PTN) plays a key role in wheat grain yield. In this study, a recombinant inbred line population with 199 lines derived from a cross between ‘20828’ and ‘Chuannong16’ was used to construct a high-density genetic map using wheat 55 K single nucleotide polymorphism (SNP) array. The constructed genetic map contains 12,109 SNP markers spanning 3021.04 cM across the 21 wheat chromosomes. The orders of the genetic and physical positions of these markers are generally in agreement, and they also match well with those based on the 660 K SNP array from which the one used in this study was derived. The ratios of SNPs located in each of the wheat deletion bins were similar among the wheat 9 K, 55 K, 90 K, 660 K and 820 K SNP arrays. Based on the constructed maps, a novel major quantitative trait locus QPtn.sau-4B for PTN was detected across multi-environments in a 0.55 cM interval on 4B and it explained 17.23–45.46% of the phenotypic variance. Twenty common genes in the physical interval between the flanking markers were identified on chromosome 4B of ‘Chinese Spring’ and wild emmer. These results indicate that wheat 55 K SNP array could be an ideal tool in primary mapping of target genes and the identification of QPtn.sau-4B laid a foundation for the following fine mapping and cloning work.
  相似文献   

18.
The Drosophila melanogaster Gad gene maps to region 64A3-5 of chromosome 3L and encodes glutamic acid decarboxylase (GAD), the rate-limiting enzyme for the synthesis of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Because this neurotransmitter has been implicated in developmental functions, we have begun to study the role of GABA synthesis during Drosophila embryogenesis. We show that Gad mRNA is expressed in a widespread pattern within the embryonic nervous system. Similarly, GAD-immunoreactive protein is present during embryogenesis. These results prompted us to screen for embryonic lethal mutations that affect GAD activity. The chromosomal region to which Gad maps, however, has not been subjected to an extensive mutational analysis, even though it contains several genes encoding important neurobiological, developmental, or cellular functions. Therefore, we have initially generated both chromosomal rearangements and point mutations that map to the Drosophila 64AB interval. Altogether, a total of 33 rearrangements and putative point mutations were identified within region 64A3-5 to 64B12. Genetic complementation analysis suggests that this cytogenetic interval contains a minimum of 19 essential genes. Within our collection of lethal mutations are several chromosomal rearrangements, two of which are in the vicinity of the Gad locus. One of these rearrangements, Df(3L)C175, is a small deletion that removes the Gad locus and at least two essential genes; the second, T(2;3)F10, is a reciprocal translocation involving the second and third chromosomes with a break within region 64A3-5. Both of these rearrangements are associated with embryonic lethality and decreased GAD enzymatic activity.  相似文献   

19.
Ordered sets of cosmids derived from E. coli K-12 803 overlap the 6 remaining gaps left in the physical map of strain W3110. We present detailed restriction maps of the gaps and surrounding regions, thus providing a comparison of about 30% of the genome of the two E. coli strains. Our analysis shows that there is a high degree of homology between the strains, with only occasional restriction fragment differences. However, the large inversion occurring between rrnD (72.1') and rrnE (90.4') in strain W3110 is absent in strain 803. Instead, a new inversion and adjacent deletion near argF is present in strain 803. The distribution of cosmid clones at, and adjacent to, the gaps shows that all gaps except one were difficult to clone in both lambda and cosmid clones. A low copy number cosmid vector, pOU61cos, developed previously, was essential for cloning 3 of the 8 gaps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号