首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual microtubules undergoing treadmilling in vitro were visualized by darkfield light microscopy, and the relationship between treadmilling and dynamic instability was studied as a function of microtubule-associated proteins (MAPs). In order to demonstrate treadmilling directly by real-time observation, we constructed three-block microtubules, the center-block of which was decorated with Tetrahymena dynein. The decorated block can easily be distinguished from undecorated blocks in the darkfield microscope because the decorated one appears much thicker. At steady-state conditions, the length of an undecorated block at one end increased and that at another end decreased, while the decorated center-block did not change in its length. The results from these direct observations show that calf brain 3X-microtubules exhibit a treadmilling flux of 0.9 micron/h. Using a similar microscopy technique, we previously demonstrated that phosphocellulose PC-microtubules existed in either the growing or the shortening phase and alternated quite frequently at steady-state conditions (dynamic instability). How does treadmilling relate to dynamic instability? An image recording of individual 3X-microtubules containing MAPs revealed that the microtubules undergo treadmilling and do not exhibit any dynamic instability. This evidence shows that MAPs suppress the dynamic instability of microtubules. That is, treadmilling can take place in the steady state only after microtubules have been stabilized by MAPs.  相似文献   

2.
Whether polarized treadmilling is an intrinsic property of microtubules assembled from pure tubulin has been controversial. We have tested this possibility by imaging the polymerization dynamics of individual microtubules in samples assembled to steady-state in vitro from porcine brain tubulin, using a 2% glycerol buffer to reduce dynamic instability. Fluorescence speckled microtubules were bound to the cover-glass surface by kinesin motors, and the assembly dynamics of plus and minus ends were recorded with a spinning-disk confocal fluorescence microscopy system. At steady-state assembly, 19% of the observed microtubules (n = 89) achieved treadmilling in a plus-to-minus direction, 34% in a minus-to-plus direction, 37% grew at both ends, and 10% just shortened. For the population of measured microtubules, the distribution of lengths remained unchanged while a 20% loss of original and 27% gain of new polymer occurred over the 20-min period of observation. The lack of polarity in the observed treadmilling indicates that stochastic differences in dynamic instability between plus and minus ends are responsible for polymer turnover at steady-state assembly, not unidirectional treadmilling. A Monte Carlo simulation of plus and minus end dynamics using measured dynamic instability parameters reproduces our experimental results and the amount of steady-state polymer turnover reported by previous biochemical assays.  相似文献   

3.
We have considered the partitioning of tubulin between monomer and polymer in the cell under conditions of dynamic instability. Dynamic instability adds to the on and off rate constant of steady-state dynamics’ new parameters: (1) the rate at which growing microtubules transit to a shrinking phase; and (2) the rate at which shrinking microtubules transit to the growing phase. Under these conditions the free-monomer concentration in the cell increases with total tubulin if the number of nucleating sites is fixed. If the number of nucleating sites increases at fixed total tubulin, subunits shift from the monomer to the polymer phase. These important properties deviate from the traditional equilibrium and steady-state theories and have important implications for the biosynthetic regulation of tubulin.  相似文献   

4.
Direct observation of steady-state microtubule dynamics   总被引:27,自引:19,他引:8       下载免费PDF全文
Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubulin derivitized with biotin. Biotinylated tubulin was used both as an internal "seed" for polymerization and as a marker for assembly onto the ends of microtubules composed of purified tubulin. Biotinylated segments were distinguished from unmodified tubulin by double-label immunofluorescence. Microtubule lengths, number concentrations, and segment lengths have been monitored with time at steady state under two buffer conditions. The results indicate that the microtubule steady state under these conditions is a balance between a majority of slowly growing microtubules and a minority of rapidly depolymerizing ones as described by the "dynamic instability" model (Mitchison T., and M. Kirschner, 1984, Nature (Lond.)., 312:232-242). Microtubules show no evidence of treadmilling; instead most show progressive growth off both ends at steady state. Although solvent conditions markedly influence the growth rates, qualitatively the behavior is unchanged.  相似文献   

5.
We have investigated the effects of taxol on steady-state tubulin flux and on the apparent molecular rate constants for tubulin addition and loss at the two ends of bovine brain microtubules in vitro. These microtubules, which consist of a mixture of 70% tubulin and 30% microtubule-associated proteins (MAPs), undergo a net addition of tubulin at one end of each microtubule (A end) and a precisely balanced net loss of tubulin at the opposite end (D end) at steady state in vitro. They do not exhibit to a detectable extent the "dynamic instability" behavior described recently for MAP-free microtubules, which would be evident as an increase in the mean microtubule length and a decrease in the number of microtubules in the suspensions [Mitchison, T., & Kirschner, M. (1984) Nature (London) 312, 237-242]. We used a double-label procedure in which microtubules were labeled with tritium and carbon-14 at A ends and carbon-14 at D ends to distinguish the two ends, combined with a microtubule collection procedure that permitted rapid and accurate analysis of retention of the two labels in the microtubules. We found that taxol slowed the flux of tubulin in a concentration-dependent manner, with 50% inhibition occurring between 5 and 7 microM drug. The effects of taxol on the apparent molecular rate constants for tubulin addition and loss at the two microtubule ends were determined by dilution analysis at an intermediate taxol concentration. The results indicated that taxol decreased the magnitudes of the dissociation rate constants at the two ends to similar extents, while exerting little effect on the association rate constants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The dynamic behavior of mammalian microtubules has been extensively studied, both in living cells and with microtubules assembled from purified brain tubulin. To understand the intrinsic dynamic behavior of mammalian nonneural microtubules, we purified tubulin from cultured HeLa cells. We find that HeLa cell microtubules exhibit remarkably slow dynamic instability, spending most of their time in an attenuated state. The tempered dynamics contrast sharply with the dynamics of microtubules prepared from purified bovine brain tubulin under similar conditions. In accord with their minimal dynamic instability, assembled HeLa cell microtubules displayed a slow treadmilling rate and a low guanosine-5'-triphosphate hydrolysis rate at steady state. We find that unlike brain tubulin, which consists of a heterogeneous mixture of beta-tubulin isotypes (beta(II), beta(III), and beta(IV) and a low level of beta(I)), HeLa cell tubulin consists of beta(I) tubulin ( approximately 80%) and a minor amount of beta(IV) tubulin ( approximately 20%). The slow dynamic behavior of HeLa cell microtubules in vitro differs strikingly from the dynamic behavior of microtubules in living cultured mammalian cells, supporting the idea that accessory factors create the robust dynamics that occur in cells.  相似文献   

7.
Several types of non-equilibrium phenomena have been observed in microtubule polymerization, including dynamic instability, assembly overshoot and oscillations. They can be interpreted in terms of interactions between tubulin subunits (= alpha, beta heterodimers), microtubules, and a third state, oligomers, which represent intermediates between microtubule disassembly and the regeneration of assembly-competent subunits by GTP. Here we examine the role of oligomers by varying conditions that stabilize or destabilize microtubules and/or oligomers. By varying their ratio one can drive tubulin assembly either into steady-state microtubules or oligomers. These regimens of assembly conditions are separated by a region where microtubules oscillate. The oscillations can be simulated by computer modelling, based on a reaction scheme involving the three states of tubulin and nucleotide exchange on tubulin subunits, but not on microtubules or oligomers.  相似文献   

8.
Video microscopic observation of a population of microtubules at steady state of assembly shows individual microtubules which interconvert between phases of growing and shrinking. The average duration of either phase is strongly affected by the tubulin concentration. Close to the steady-state (or 'critical') concentration, the mean excursion lengths may be of cellular dimensions, suggesting that dynamic instability can function as a control mechanism for the spatial organization of microtubule arrays. Numerical modelling, based on a limited number of assumptions, illustrates the transition behaviour, and the polar nature of this instability. The basic concept is that tubulin-GTP adds to a terminal position of the microtubule lattice and causes hydrolysis of the tubulin-GTP at a previously terminal lattice position [1, 2]. The predictions of this model can be evaluated experimentally. Further, examination of the consequences of introducing into the lattice a molecule such as a tubulin-drug complex, with altered capacity for helical propagation, provides a quantitative model for substoichiometric inhibition of microtubule dynamics and growth. This principle could have a more general relevance to mechanisms of regulation of microtubules within the cytoskeleton.  相似文献   

9.
We have reviewed recent progress in the dynamic features of microtubules in vitro as visualized by dark-field light microscopy using high intensity illumination. Observations of individual microtubules in real-time have made it possible to analyze the unique characteristics of microtubules exactly. The following three topics have been discussed: (1) treadmilling, i.e., the simultaneous assembly of tubulin at one end and disassembly at the other end on a single microtubule at a steady state. (2) Dynamic instability, i.e., the very unusual phenomenon in which two populations of microtubules coexist: those in one population elongating while those in the other shortening in the absence of MAPs. Both ends of the microtubules exist either in the growing or the shortening phase, and alternate between the two phases in a stochastic manner. (3) Morphogenesis of liposomes by microtubule growth. Tubulin is encapsulated into model membrane vesicles, liposomes. Polymerization of the encapsulated tubulin causes a change in shape of the spherical liposomes to form bipolar or multipolar vesicles, suggesting that microtubules have an active function in the morphogenesis of membranous organelles and cells.  相似文献   

10.
We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells.  相似文献   

11.
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.  相似文献   

12.
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.  相似文献   

13.
Dynamic instability is the term used to describe the transition of an individual microtubule, apparently at random, between extended periods of slow growth and brief periods of rapid shortening. The typical sawtooth growth and shortening transition behavior has been successfully simulated numerically for the 13-protofilament microtubule A-lattice by a lateral cap model (Bayley, P. M., M. J. Schilstra, and S. R. Martin. 1990. J. Cell Sci. 95:33-48). This kinetic model is now extended systematically to other related lattice geometries, namely the 13-protofilament B-lattice and the 14-protofilament A-lattice, which contain structural "seams". The treatment requires the assignment of the free energies of specific protein-protein interactions in terms of the basic microtubule lattice. It is seen that dynamic instability is not restricted to the helically symmetric 13-protofilament A-lattice but is potentially a feature of all A- and B-lattices, irrespective of protofilament number. The advantages of this general energetic approach are that it allows a consistent treatment to be made for both ends of any microtubule lattice. Important features are the predominance of longitudinal interactions between tubulin molecules within the same protofilament and the implication of a relatively favorable interaction of tubulin-GDP with the growing microtubule end. For the three lattices specifically considered, the treatment predicts the dependence of the transition behavior upon tubulin concentration as a cooperative process, in good agreement with recent experimental observations. The model rationalizes the dynamic properties in terms of a metastable microtubule lattice of tubulin-GDP, stabilized by the kinetic process of tubulin-GTP addition. It provides a quantitative basis for the consideration of in vitro microtubule behaviour under both steady-state and non-steady-state conditions, for comparison with experimental data on the dilution-induced disassembly of microtubules. Similarly, the effects of small tubulin-binding molecules such as GDP and nonhydrolyzable GTP analogues are readily treated. An extension of the model allows a detailed quantitative examination of possible modes of substoichiometric action of a number of antimitotic drugs relevant to cancer chemotherapy.  相似文献   

14.
Dynamics of microtubules from erythrocyte marginal bands.   总被引:2,自引:1,他引:1       下载免费PDF全文
Microtubules can adjust their length by the mechanism of dynamic instability, that is by switching between phases of growth and shrinkage. Thus far this phenomenon has been studied with microtubules that contain several components, that is, a mixture of tubulin isoforms, with or without a mixture of microtubule-associated proteins (MAPs), which can act as regulators of dynamic instability. Here we concentrate on the influence of the tubulin component. We have studied MAP-free microtubules from the marginal band of avian erythrocytes and compared them with mammalian brain microtubules. The erythrocyte system was selected because it represents a naturally stable aggregate of microtubules; second, the tubulin is largely homogeneous, in contrast to brain tubulin. Qualitatively, erythrocyte microtubules show similar features as brain microtubules, but they were found to be much less dynamic. The critical concentration of elongation, and the rates of association and dissociation of tubulin are all lower than with brain microtubules. Catastrophes are rare, rescues frequent, and shrinkage slow. This means that dynamic instability can be controlled by the tubulin isotype, independently of MAPs. Moreover, the extent of dynamic behavior is highly dependent on buffer conditions. In particular, dynamic instability is strongly enhanced in phosphate buffer, both for erythrocyte marginal band and brain microtubules. The lower stability in phosphate buffer argues against the hypothesis that a cap of tubulin.GDP.Pi subunits stabilizes microtubules. The difference in dynamics between tubulin isotypes and between the two ends of microtubules is preserved in the different buffer systems.  相似文献   

15.
Deuterium oxide (D(2)O) is known to promote the assembly of tubulin into microtubules in vitro, to increase the volume of mitotic spindles and the number and length of spindle microtubules, and to inhibit mitosis. Reasoning that its actions on cellular microtubules could be due to modulation of microtubule dynamics, we examined the effects of replacing H(2)O with D(2)O on microtubule dynamic instability, treadmilling, and steady-state GTPase activity. We found that replacing 50% or more of the H(2)O with D(2)O promoted microtubule polymerization and stabilized microtubules against dilution-induced disassembly. Using steady-state axoneme-seeded microtubules composed of pure tubulin and video microscopy, we found that 84% D(2)O decreased the catastrophe frequency by 89%, the shortening rate by 80%, the growing rate by 50%, and the dynamicity by 93%. Sixty percent D(2)O decreased the treadmilling rate of microtubules composed of tubulin and microtubule-associated proteins by 42%, and 89% D(2)O decreased the steady-state GTP hydrolysis rate by 90%. The mechanism responsible for the ability of D(2)O to stabilize microtubule dynamics may involve enhancement of hydrophobic interactions in the microtubule lattice and/or the substitution of deuterium bonds for hydrogen bonds.  相似文献   

16.
Microtubules exhibit dynamic instability, converting abruptly between assembly and disassembly with continued growth dependent on the presence of a tubulin-GTP cap at the plus end of the organelle. Tubulin, the main structural protein of microtubules, is a heterodimer composed of related polypeptides termed alpha-tubulin and beta-tubulin. Most eukaryotic cells possess several isoforms of the alpha- and beta-tubulins, as well as gamma-tubulin, an isoform restricted to the centrosome. The isoforms of tubulin arise either as the products of different genes or by posttranslational processes and their synthesis is subject to regulation. Tubulin isoforms coassemble with one another and isoform composition does not appear to determine whether a microtubule is able to carry out one particular activity or another. However, the posttranslational modification of polymerized tubulin may provide chemical signals which designate microtubules for a certain function. Microtubules interact with proteins called microtubule-associated proteins (MAPs) and they can be divided into two groups. The structural MAPs stimulate tubulin assembly, enhance microtubule stability, and influence the spatial distribution of microtubules within cells. The dynamic MAPs take advantage of microtubule polarity and organization to vectorially translocate cellular components. The interactions between microtubules and MAPs contribute to the structural-functional integration that characterizes eukaryotic cells.  相似文献   

17.
The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and during the formation of the preprophase band (PPB), the cytoskeletal structure that defines the site of cytokinesis. Here we show that after 2 h of microtubule accumulation in the PPB and concurrent disappearance elsewhere in the cortex, the PPB is completed and starts to breakdown exponentially already 20 min before the onset of prometaphase. During formation of the PPB, the dynamic instability, i.e., the stochastic alternating between growing and shrinking phases, of the cortical microtubules outside the PPB increases significantly, but the microtubules do not become shorter. Based on this, as well as on the cross-linking of microtubules in the PPB and the lack of evidence for motor involvement, we propose a "search-and-capture" mechanism for PPB formation, in which the regulation of dynamic instability causes the cortical microtubules to become more dynamic and possibly longer, while the microtubule cross-linking activity of the developing PPB preferentially stabilizes these "searching" microtubules. Thus, microtubules gradually disappear from the cortex outside the PPB and aggregate to the forming PPB.  相似文献   

18.
Modulation of microtubule stability by kinetochores in vitro   总被引:9,自引:6,他引:3       下载免费PDF全文
The interface between kinetochores and microtubules in the mitotic spindle is known to be dynamic. Kinetochore microtubules can both polymerize and depolymerize, and their dynamic behavior is intimately related to chromosome movement. In this paper we investigate the influence of kinetochores on the inherent dynamic behavior of microtubules using an in vitro assay. The dynamics of microtubule plus ends attached to kinetochores are compared to those of free plus ends in the same solution. We show that microtubules attached to kinetochores exhibit the full range of dynamic instability behavior, but at altered transition rates. Surprisingly, we find that kinetochores increase the rate at which microtubule ends transit from growing to shrinking. This result contradicts our previous findings (Mitchison, T. J., and M. W. Kirschner, 1985b) for technical reasons which are discussed. We suggest that catalysis of the growing to shrinking transition by kinetochores may account for selective depolymerization of kinetochore microtubules during anaphase in vivo. We also investigate the effects of a nonhydrolyzable ATP analogue on kinetochore microtubule dynamics. We find that 5' adenylylimido diphosphate induces a rigor state at the kinetochore-microtubule interface, which prevents depolymerization of the microtubule.  相似文献   

19.
The intermittent transition between slow growth and rapid shrinkage in polymeric assemblies is termed “dynamic instability”, a feature observed in a variety of biochemically distinct assemblies including microtubules, actin, and their bacterial analogs. The existence of this labile phase of a polymer has many functional consequences in cytoskeletal dynamics, and its repeated appearance suggests that it is relatively easy to evolve. Here, we consider the minimal ingredients for the existence of dynamic instability by considering a single polymorphic filament that grows by binding to a substrate, undergoes a conformation change, and may unbind as a consequence of the residual strains induced by this change. We identify two parameters that control the phase space of possibilities for the filament: a structural mechanical parameter that characterizes the ratio of the bond strengths along the filament to those with the substrate (or equivalently the ratio of longitudinal to lateral interactions in an assembly), and a kinetic parameter that characterizes the ratio of timescales for growth and conformation change. In the deterministic limit, these parameters serve to demarcate a region of uninterrupted growth from that of collapse. However, in the presence of disorder in either the structural or the kinetic parameter the growth and collapse phases can coexist where the filament can grow slowly, shrink rapidly, and transition between these phases, thus exhibiting dynamic instability. We exhibit the window for the existence of dynamic instability in a phase diagram that allows us to quantify the evolvability of this labile phase.  相似文献   

20.
M A Jordan  L Wilson 《Biochemistry》1990,29(11):2730-2739
We have investigated the effects of vinblastine at micromolar concentrations and below on the dynamics of tubulin exchange at the ends of microtubule-associated-protein-rich bovine brain microtubules. The predominant behavior of these microtubules at polymer-mass steady state under the conditions examined was tubulin flux, i.e., net addition of tubulin at one end of each microtubule, operationally defined as the assembly or A end, and balanced net loss at the opposite (disassembly or D) end. No dynamic instability behavior could be detected by video-enhanced dark-field microscopy. Addition of vinblastine to the microtubules at polymer-mass steady state resulted in an initial concentration-dependent depolymerization predominantly at the A ends, until a new steady-state plateau at an elevated critical concentration was established. Microtubules ultimately attained the same stable polymer-mass plateau when vinblastine was added prior to initiation of polymerization as when the drug was added to already polymerized microtubules. Vinblastine inhibited tubulin exchange at the ends of the microtubules at polymer-mass steady state, as determined by using microtubules differentially radiolabeled at their opposite ends. Inhibition of tubulin exchange occurred at concentrations of vinblastine that had very little effect on polymer mass. Both the initial burst of incorporation that occurs in control microtubule suspensions following a pulse of labeled GTP and the relatively slower linear incorporation of label that follows the initial burst were inhibited in a concentration-dependent manner by vinblastine. Both processes were inhibited to the same extent at all vinblastine concentrations examined. If the initial burst of label incorporation represents a low degree of dynamic instability (very short excursions of growth and shortening of the microtubules at one or both ends), then vinblastine inhibits both dynamic instability and flux to similar extents. The ability of vinblastine to inhibit tubulin exchange at microtubule ends in the micromolar concentration range appeared to be mediated by the reversible binding of vinblastine to tubulin binding sites exposed at the polymer ends. Determination by dilution analysis of the effects of vinblastine on the apparent dissociation rate constants for tubulin loss at opposite microtubule ends indicated that a principal effect of vinblastine is to decrease the dissociation rate constant at A ends (i.e., it produces a kinetic cap at A ends), whereas it has no effect on the D-end dissociation rate constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号