首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Anisotropy of forged steel components is especially adverse when it concerns rotationally symmetric components. Manganese sulfides (MnS) in steels may be desired for their improvement of machining properties; however, they also deteriorate fatigue behavior. A quantification of the effect of MnS on anisotropy is necessary to find an optimum for component dimensioning. To isolate the influence of MnS on anisotropy only, high cleanness of the test material is required. The test material in the current investigation was molten in a vacuum furnace to high-cleanness composition. Materials with two different S levels were produced to detect variations in anisotropy according to amount, shape, and distribution of the MnS inclusions. The two batches were cross-rolled to plates with a deformation ratio of 4.5. The MnS phase constitutes, upon forging or rolling, pancake-shaped inclusions. In the case of cross-rolling, an in-plane rotational symmetry of the inclusions could be created. The shape and size of these inclusions are essential for the mechanical behavior of the material. Push-pull fatigue testing was performed in longitudinal (in plane) and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior with inferior performance in short transverse directions where the principal stress is perpendicular to the flattened inclusions. The anisotropy was somewhat more pronounced for the high-S material, resulting from a different fatigue crack growth mechanism.  相似文献   

2.
3.
 长条状的硫化物夹杂往往会导致热轧/锻造含硫钢的力学性能呈现出明显的各向异性。为了明确硫化物变性处理铁素体-珠光体型非调质钢的疲劳性能各向异性,采用轴向力控制高频疲劳试验机(应力比R=-1)研究了工业生产的45MnVS非调质钢锻态及调质态的高周疲劳断裂行为。结果表明,试验料纵向样中的MnS夹杂分布较为均匀,多呈短棒状或纺锤形,平均长宽比为3.4±1.7。与未变性处理的含硫非调质钢相比,试验料塑性和韧性的各向异性得到显著降低。锻态与调质态横向样的疲劳性能略低于纵向样,调质态样的疲劳极限比(0.52~0.54)明显高于锻态样(0.46)。在ΔK值大于约35 MPa·m1/2时,横向样的疲劳裂纹扩展速率略大于纵向样。疲劳断口分析表明,2种状态横向样的疲劳裂纹均主要起源于钢中条棒状MnS夹杂,且调质态样受影响的程度更大。上述结果表明,试验钢硫化物变性处理后的疲劳性能各向异性很小,锻态组织的各向异性程度略低于调质态组织,但后者具有更为优异的疲劳性能。  相似文献   

4.
Directionality of mechanical properties—such as toughness and bend formability—is typical of hot rolled steels processed on modern, hot strip mills. In aluminum killed steels, directionality results mainly from elongated (type II) manganese sulfide inclusions. Directionality can be reduced by retaining the original globular shape of the precipitated sulfides. This can be accomplished by promoting the formation of sulfides which are more stable and have a higher melting point than that of manganese sulfide. Thermodynamic considerations indicate that additions of Ti, Zr, Ca, Mg, and rare earths are suitable for this purpose. Experimental work on laboratory heats containing 0.020 to 0.25 pct S involved mainly additions of rare earths (mischmetal or silicides) to a V?Al?N high strength, low alloy steel. Other strong sulfide formers were not utilized either because of too high vapor pressure at steelmaking temperatures or because of their strong interaction with nitrogen. For cerium contents of 0.03 to 0.04 pct, the shape of inclusions, identified as rare earth sulfides, was globular. Control of sulfide shape contributed to a marked improvement in toughness and formability of steel in the direction transverse to the rolling direction. The results have been verified in full scale plant trials.  相似文献   

5.
高碳含铜孪生诱发塑性(TWIP)钢的纯净化制备对充分发挥其优异性能具有重要性。为了提高高碳含铜TWIP钢的洁净度, 实验利用金相显微镜、扫描电镜及能谱仪等对该TWIP钢经真空感应熔炼、固溶处理后的铸锭和热轧板材中非金属夹杂物进行分析, 找出了钢中夹杂物类型、来源以及不同工序的变化规律。结果表明, TWIP钢中主要存在铁锰氧化物、硅酸盐类夹杂、硫化物和氮化物。在该TWIP钢使用和热加工的温度范围内, 硫化物表现出良好的塑性, 氮化物属硬质脆性夹杂物。硅酸盐类夹杂物和铁锰氧化物变形特性受其成分和温度变化的影响较为明显。  相似文献   

6.
无缝钢管中非金属夹杂物特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
峰位于4869 eV位置,对应于元素锡的四价氧化态。锡泥中含有的主要成分为SnO2。  相似文献   

7.
The load partitioning between two phases in a cold-rolled duplex stainless steel has been experimentally studied in situ by X-ray diffraction, for different loading directions. It was found that the load partitioning between the two phases is dependent on the loading direction. For loading in the rolling direction, both phases deform plastically to the same degree, while more plastic deformation occurs in the austenitic phase during loading in the transverse direction. For loading in the 45-deg direction, more plastic deformation occurs in the ferritic phase. The strong crystallographic texture in the ferritic phase makes the material anisotropic, with a higher stiffness and yield strength in the transverse direction compared to the rolling direction. The measured texture was used as input to theoretical predictions of both elastic and plastic anisotropy. The plastic anisotropy was predicted by assuming intragranular slip as the main deformation mechanism. The predicted anisotropic material properties were then used in finite-element simulations to study the flow behavior of the material in different directions. The predicted flow behavior was found to be in good agreement with the experimentally observed load partitioning between the phases for loading in the rolling and transverse directions. However, the yield strength of the ferritic phase during loading in the 45-deg direction was found to be lower than what was predicted. The reason for this is the difference in slip characteristics in different sample directions, because of the morphological texture.  相似文献   

8.
The influence of sulfur content, sulfide shape, and pearlite banding on the anisotropy of mechanical properties was evaluated in a series of 0.2 pct carbon, 1.0 pct manganese steels containing either 0.004 or about 0.013 pct sulfur with and without rare-earth additions. Both globular and stringered sulfide inclusions had a detrimental effect on reduction of area and Charpy shelf energy; this effect was particularly evident in the deterioration of through-thickness properties and was much more severe for stringered inclusions than for globular inclusions. The effect of the sulfide inclusions in the different steels on the through-thickness reduction of area and Charpy shelf energy correlated with differences in their mean free distances or nearest-neighbor distances, both of which depended upon the inclusion characteristics of volume fraction, size, and aspect ratio. The projected length of sulfide inclusions per unit area on a plane perpendicular to the transverse direction seemed to reflect the overall effect of the inclusion characteristics on through-thickness reduction of area and Charpy shelf energy and appeared to be a useful parameter for assessment of steel’s susceptibility to fracture. Pearlite banding had no obvious effect on reduction of area or Charpy shelf energy in any of the steels studied. The improvement observed for the steel with stringered sulfide inclusions as a result of the removal of pearlite banding was a consequence of the inclusions coarsening during the short-time high-temperature treatment used to remove banding.  相似文献   

9.
车智超  刘威  杨树峰  李京社  刘超  袁昊 《钢铁》2022,57(3):36-43
155PH沉淀硬化不锈钢具有优良的机械加工性能,而钢中夹杂物可以对其性能造成显著影响.在加工时,长条状的硫化物夹杂往往会导致含硫钢的横向性能下降,呈现出明显的各向异性,进而导致材料因断裂而失效.为了研究碲处理对钢中硫化物形貌的影响,利用高温试验、扫描电镜-能谱仪(SEM-EDS)及统计方法,研究了碲处理对15-5PH钢...  相似文献   

10.
The effect of extrusion-induced particle-orientation anisotropy on the mechanical behavior of metal-matrix composites (MMCs) was examined. In this study, we have shown that this anisotropy has a significant influence on the tensile and fatigue behavior SiC particle-reinforced Al alloy composites. The preferred orientation of SiC particles was observed parallel to the extrusion axis, with the extent of orientation being highest for the lowest-volume-fraction composites. The composites exhibited higher Young’s modulus and tensile strength along the longitudinal direction (parallel to the extrusion axis) than in the transverse direction. The extent of anisotropic behavior increased with increasing volume fraction, because of the increasing influence of the SiC reinforcement on the Young’s modulus and tensile properties. The preferred orientation also resulted in anisotropy in the fatigue behavior of the composite material. The trends mirrored those observed in tension, with higher overall fatigue strengths for both orientations and a higher anisotropy with increasing volume fraction of particles. The influence of particle-orientation anisotropy and the resulting tensile and fatigue damage mechanisms is discussed.  相似文献   

11.
鲁金龙  丘文生  成国光  龙鹄  李尧 《钢铁》2022,57(5):118-128
 汽车控制臂由于形状复杂,切削量大,部分汽车控制臂用钢在加入质量分数0.03%硫元素的基础上,又进一步添加了少量钙元素,希望将钢中常见的细长条状MnS转变为纺锤状(Ca, Mn)S以增加零件的切削性能。然而,硫质量分数为0.03%时,钙元素在钢液中的溶解度很低,冷却和凝固过程单一的纯(Ca, Mn)S生成量极少。因此,提出了利用钢液中生成的含CaO类的氧化物来诱导(Ca, Mn)S在其外围形核长大,形成大量双层结构复合硫化物的形貌控制机理。为了研究最佳双层结构复合硫化物形成机理,选取了3炉不同冶炼工艺的汽车控制臂用钢,利用带能谱分析的电子扫描显微镜观察了铸坯和轧材中典型复合硫化物形貌、成分特征,并手动测量了其尺寸,最后利用热力学软件FactSage计算了钢中夹杂物的生成行为。研究结果表明,当钢中不进行钙处理时,复合硫化物内部氧化物主要为Al2O3或低MgO比例的镁铝尖晶石,外围硫化物为纯MnS,轧制后成细长条状。当钢中进行钙处理后,可以得到两种不同类型的复合硫化物。一种内部氧化物中CaO组元含量较高,外围硫化物主要是高CaS比例的(Ca, Mn)S,基本不变形,成典型的D类或Ds类形貌;另一种核心氧化物中CaO组元低,外围硫化物主要是低CaS比例的(Ca, Mn)S,轧制后成纺锤状。控制钙处理后钢液氧化物中合适的CaO比例使得氧化物既具有高效的硫化物形核能力,又能促进合适CaS比例的(Ca, Mn)S在其外围生成,这是钢中得到大量纺锤状双层结构复合硫化物的关键。当钢中Ca/S比约为0.07时,外围硫化物中的钙元素质量分数为2%~5%最为理想。  相似文献   

12.
The fatigue characteristics of a high cleanliness bearing steel(30Cr3WVE)produced by double vacuum melting and the effect of non- metallic inclusions on fatigue properties were studied by mechanical analysis and SEM analysis of microstructure and fatigue fracture morphology.The results show that the 30Cr3WVE bearing steel achieves excellent mechanical properties after being quenched at 870?? and tempered at 550??, and its ultimate rotating bending fatigue strength reaches 732MPa.Through observing SEM results of fatigue fracture,the fatigue crack originates from the surface defects and internalnon- metallic inclusions. Surface defects are caused by the abscission of non- metallic inclusions and machining marks. The internal non- metallic inclusions are mainly oxides of Al, Mg, Si and Ca. The influence of inclusions on the ultimate bending fatigue strength of 30Cr3WVE bearing steel is closely related to its size and distance to the surface. The model of influence of the size and distribution of inclusions on the rotating bending fatigue strength of 30Cr3WVE bearing steel is constructed. The rotational bending fatigue strength of the steel can be improved remarkably by controlling the size and quantity of inclusions.  相似文献   

13.
In this paper, the mechanisms of the shape control of sulphide inclusions by calcium in a resulfurised alloy steel and the quantitative effect of the shape factor, the size and the quantity of sulphide inclusions on the transverse impact toughness are investigated. There are three different types of sulphide inclusions in the calcium-treated resulfurised alloy steel, 58CrNiMnMoVSCa, namely elongated MnS, oval (Mn,Ca)S with and without any calcium aluminate nucleus. The proportion of the former is reduced while that of the two latter raised as the ratio of Ca/S in steel increases. The mechanisms of the shape control of sulphide inclusions by calcium are mainly due to its solid solution hardening effect. Besides, the calcium aluminate, existing as the nucleus of the oval (Mn,Ca)S, restricts the hot deformation of the sulphide inclusions and as a result, enhances further the shape control. Based on the solid solution effect of calcium on sulphide inclusions, the quantitative relationship between the shape factor Λ of sulphide inclusions and the ratio of Ca/S in steel at a hot forging reduction of 85 is developed. Finally, the quantitative relationship between the transverse impact toughness and the parameters of sulphide inclusions, namely the shape factor (Λ), the size (L) and the quantity (N) is also developed.  相似文献   

14.
The morphological and compositional modifications of sulfides in AISI 4340 low alloy steel, in which the sulfur level was raised to about 0.1 pct, were studied during hotrolling at 1223 K followed by homogenization at 1583 K for various lengths of time. The relative plasticity of sulfide inclusions with respect to the steel matrix increased with cooling rate during solidification, hence with iron content. The number of sulfides first increased with homogenization time, reached a maximum and subsequently decreased. Inclusion size exhibited the opposite variation. The sulfide matrix interface area per unit volume of sulfide decreased continuously with homogenization time. These variations were in agreement with observed morphological modifications of sulfides during homogenization. During early stages of homogenization the flattened and elongated sulfide plates in the as-rolled material coarsened and became cylindrical. The cylindrical sulfides, broken into segments which spheroidized and coarsened with time, assumed finally a faceted morphology. During homogenization iron was rejected from the sulfide phase into the surrounding matrix, whereas manganese was accepted, causing the formation of manganese depleted zone around the inclusions. This paper is based on a Ph.D. Thesis submitted by Y. V. Murty to the Department of Metallurgy, University of Connecticut.  相似文献   

15.
Upset testing of cylindrical specimens generates circumferential tensile stresses at the barreled surfaces. These stresses can be utilized in the same manner as the tensile stresses in the tension test to evaluate the ductility of materials. Using the upset test method, the anisotropy of ductile fracture in AISI 1045 hot-rolled steel plates was determined. Ductility parallel to the plane of inclusions is found to be ≈ 50 pet higher than that perpendicular to the inclusions. It is shown that the local surface strains at fracture in upset testing correlate well with the true zero-gage-length fracture strain in tension testing, provided the tensile stresses in the respective tests are in the same direction relative to the inclusion orientation. Thus, compression tests parallel to the inclusion direction, which generate tensile stresses perpendicular to the inclusions, can be utilized to measure ductility transverse to the fiber of wrought materials. This is particularly useful in determining the short transverse or through-thickness ductility in hot-rolled or forged materials having thin sections.  相似文献   

16.
利用激光共聚焦扫描显微镜原位观察S质量分数为0.065%的非调质钢纵向与横向拉伸过程中MnS的行为,研究MnS形貌与分布对非调质钢各向异性的影响.原位观察表明锻后钢中存在大量长条形MnS,横向与纵向拉伸过程中MnS长度方向与拉力方向取向不同.横向拉伸过程中MnS更易与基体分离产生裂纹,裂纹随MnS长度方向扩展长大,最终导致基体的断裂.MnS在纵向拉伸时不易与基体分离,因此对纵向拉伸性能影响较小.钢中群聚分布的MnS有利于裂纹的聚合长大,会促进基体的断裂.   相似文献   

17.
钢中硫化物夹杂物球化和对钢性能的影响   总被引:7,自引:1,他引:6  
本文叙述了钢液凝固中,硫化物夹杂球化的条件,钢在压力加工中硫化物不易变形的原因,以及硫化物变形后再加热时的行为,举例说明了硫化物球化对钢性能的影响;以便通过相应的措施来改善钢的性能。  相似文献   

18.
章伟钢  韩顺  厉勇  黄顺喆  蒙庆  周芸 《钢铁》2017,52(10):83-88
 结合显微组织观察和力学性能测试,对国产大型客机用300M钢应力比[R=-1]的轴向光滑疲劳性能进行了研究,分析了大型客机用300M钢的高周轴向疲劳断口形貌及起裂原因,重点研究了非金属夹杂物裂纹源的特性。结果表明,国产大型客机用300M钢冶炼纯净度较高,最终热处理后具有良好的综合力学性能,其应力集中系数[Kt=1,]应力比[R=-1]的高周轴向疲劳极限[σ-1]为907 MPa;通过断口SEM观察发现非金属夹杂物引起的应力集中是导致高周轴向疲劳开裂的主要原因,该类起裂源为复杂氧化物和硫化钙的复合非金属夹杂物,尺寸在5.5~20.5 μm之间,主要成分为铝、钙、硅、氧和硫等。  相似文献   

19.
The effect of thermomechanical processing on fatigue crack propagation (FCP) is examined for 70/30 brass and 305 stainless steel. It is found that grain size and cold work induced changes in yield strength, ductility, and preferred orientation have a minor effect on FCP. Rather, cyclically stabilized properties of material in the crack tip plastic zone are believed to control the FCP process. Although mechanical processing fails to significantly alter the rate of FCP, it is apparently responsible for the unique fracture path observed in specimens oriented at an angle(A) to the rolling direction. Deviation of the crack path out of the plane of maximum net section stress is believed to be associated with mechanical fibering andJor crystallographic texturing effects. The complex fracture mode transition observed in cold worked 70/30 brass also is associated with the deformation texture of the starting material. For the cold-worked 305 stainless steel, striation spacings are correlated with the stress intensity range for specimens tested in the longitudinal, transverse, and “angle” orientations. Comparison of these data with corresponding macroscopic data indicate that an approximately one-to-one correspondence exists between macroscopic and microscopic fatigue crack growth rates over the range investigated.  相似文献   

20.
The mechanical properties of two heats of HY180 steel are compared after aging at 425 °C or 510 °C. The two heats of material appear very similar microstructurally, except most of the sulfides in one are believed to be titanium carbosulfides, while the sulfides in the other heat appear to be manganese sulfides. At both aging temperatures, the crack tip opening displacement at fracture (δIC) of the heat containing the titanium carbosulfides is over twice that of the heat containing the manganese sulfides. Measurements of the void volume fracture as a function of strain indicate that the titanium carbosulfide particles are much more resistant to void nucleation than are the manganese sulfide particles. The unusually high toughness of the heat containing the titanium carbosulfides is attributed to this increased resistance to void nucleation. Formerly Graduate Student, Carnegie Mellon University Formerly Postdoctoral Student, Carnegie Mellon University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号