首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the energy and exergy analyses of the drying process of thin layer of red pepper slices are investigated. Drying experiments were conducted at inlet temperatures of drying air of 55, 60 and 70 °C and at a drying air velocity of 1.5 m/s in a convective type dryer. Using the first law of thermodynamics, energy analysis was carried to estimate the ratios of energy utilization. However, exergy analysis was accomplished to determine type and magnitude of exergy losses during process by applying the second law of thermodynamics.  相似文献   

2.
This paper is concerned with the energy and exergy analyses of the thin layer drying process of mulberry via forced solar dryer. Using the first law of thermodynamics, energy analysis was carried out to estimate the ratios of energy utilization and the amounts of energy gain from the solar air collector. However, exergy analysis was accomplished to determine exergy losses during the drying process by applying the second law of thermodynamics. The drying experiments were conducted at different five drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. The effects of inlet air velocity and drying time on both energy and exergy were studied. The main values of energy utilization ratio were found to be as 55.2%, 32.19%, 29.2%, 21.5% and 20.5% for the five different drying mass flow rate ranged between 0.014 kg/s and 0.036 kg/s. The main values of exergy loss were found to be as 10.82 W, 6.41 W, 4.92 W, 4.06 W and 2.65 W with the drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. It was concluded that both energy utilization ratio and exergy loss decreased with increasing drying mass flow rate while the exergetic efficiency increased.  相似文献   

3.
This paper is concerned with the investigation of the energy and exergy analyses in convective drying process of multi-layered porous media. The drying experiments were conducted to find the effects of multi-layered porous particle size and thermodynamics conditions on energy and exergy profiles. An energy analysis was performed to estimate the energy utilization by applying the first law of thermodynamics. An exergy analysis was performed to determine the exergy inlet, exergy outlet, exergy losses during the drying process by applying the second law of thermodynamics. The results show that the energy utilization ratio (EUR) and the exergy efficiency depend on the particle size as well as the hydrodynamic properties and the layered structure, by considering the interference between capillary flow and vapor diffusion in the multi-layered packed bed.  相似文献   

4.
In this paper the energy and exergy analyses in drying process of porous media using hot air was investigated. Drying experiments were conducted to find the effects of particle size and thermodynamics conditions on energy and exergy profiles. An energy analyses was performed to estimate the energy utilization by applying the first law of thermodynamics. An exergy analyses was performed to determine the exergy inlet, exergy outlet, exergy losses and efficiency during the drying process by applying the second law of thermodynamics. The results show that energy utilization ratio (EUR) and exergy efficiency depend on the particle size as well as hydrodynamic properties. Furthermore, the results of energy and exergy presented here can be applied to other porous drying processes which concern effect of porosity as well as grain size.  相似文献   

5.
The energy and exergy analyses of the drying process of olive mill wastewater (OMW) using an indirect type natural convection solar dryer are presented. Olive mill wastewater gets sufficiently dried at temperatures between 34 °C and 52 °C. During the experimental process, air relative humidity did not exceed 58%, and solar radiation ranged from 227 W/m2 to 825 W/m2. Drying air mass flow was maintained within the interval 0.036–0.042 kg/s. Under these experimental conditions, 2 days were needed to reduce the moisture content to approximately one-third of the original value, in particular from 3.153 gwater/gdry matter down to 1.000 gwater/gdry matter.Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater and the ratio of energy utilization of the drying chamber. Also, applying the second law, exergy analysis was developed to determine the type and magnitude of exergy losses during the solar drying process. It was found that exergy losses took place mainly during the second day, when the available energy was less used. The exergy losses varied from 0 kJ/kg to 0.125 kJ/kg for the first day, and between 0 kJ/kg and 0.168 kJ/kg for the second. The exergetic efficiencies of the drying chamber decreased as inlet temperature was increased, provided that exergy losses became more significant. In particular, they ranged from 53.24% to 100% during the first day, and from 34.40% to 100% during the second.  相似文献   

6.
This paper is concerned with the energy and exergy analyses in the drying process of non-hygroscopic porous packed bed by combined multi-feed microwave-convective air and continuous belt system (CMCB). Most importantly, this work focused on the investigation of drying phenomena under industrialized microwave processing. In this analysis, the effects of the drying time, hot-air temperature, porous structure (F-Bed and C-Bed) and location of magnetron on overall drying kinetics and energy utilization ratio (EUR) were evaluated in detail. The results showed that using the continuous microwave application technique had several advantages over the conventional method such as shorter processing times, volumetric dissipation of energy throughout a product with higher energy utilization and less exergy efficiency in drying process. The results presented here provided fundamental understanding for drying process using CMCB in industrial size.  相似文献   

7.
In this paper, through introducing an external heat source to the conventional humid air turbine (HAT) cycle, we have studied the performances of the improved humid air gas turbine cycle mainly by exergy analysis method. In order to attain the performance of the humid air gas turbine with external heat source, we compare it with the conventional HAT cycle in detail with different factors such as the pressure ratio, turbine inlet temperature (TIT) and the external circulating water mass flow. The results showed that the specific work of the new system and the humidity ratio of saturator are all increased in some degree. For example, in the same pressure ratio and TIT, when the ratio of the external circulating water mass flow rate with that of the internal water is 0.2, the specific work increases more than 15.2 kJ kg−1a, and the humidity raises at least 2.0 percent points. By introducing the external circulating water into the system, though thermal efficiency of the new HAT cycle is lower than that of the conventional HAT cycle, the exergy efficiency exhibits different results. Generally, when the pressure ratio is over 8, the exergy efficiency for the proposed HAT cycle is higher than the conventional HAT cycle; while less than 8, whether or not the exergy efficiency increases will mainly depend on TIT. In addition, the exergy destructions of components in systems were investigated. Through the comparison of the new system with the conventional HAT cycle, it was found that the exergy loss proportion in combustion declines for the new system, and the proportion of exhaust loss increases. From the viewpoint of total energy system, the HAT cycle with utilization of external heat source is a beneficial way to improve the overall performances of energy utilization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Energy and exergy analysis, in the thermodynamics, is an important tool used to predict the performance of drying system. In this work, energy and exergy analyses are made during the drying process of banana using an indirect type passive solar dryer. Solar flat plate air collector is used to heat the air. Banana gets sufficiently dried at temperatures between 28 and 82?°C. Solar radiation is measured and it is ranged from 335 to 1210?W/m2. Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater. Also, applying the second law of thermodynamics, exergy analysis was carried out to determine exergy losses during the drying process. The exergy losses varied from 3.36 to 25.21?kJ/kg. In particular, the exergy efficiency values vary from 7.4 to 45.32%.  相似文献   

9.
《Exergy》2002,2(2):87-98
Energy and exergy analyses are conducted of the fluidized bed drying of moist materials for optimizing the operating conditions and the quality of the products. In this regard, energy and exergy models are developed to evaluate energy and exergy efficiencies, and are then verified with experimental data (for the product, wheat) taken from the literature. The effects of inlet air temperature, fluidization velocity, and initial moisture content on both energy and exergy efficiencies are studied. Furthermore, the hydrodynamic aspects, e.g., the bed hold up, are also studied. The results show that exergy efficiencies are less than energy efficiencies due to irreversibilities which are not taken into consideration in energy analysis, and that both energy and exergy efficiencies decrease with increasing drying time.  相似文献   

10.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Stenters are the dryers that are commonly used in textile finishing mills. The exhaust air of the stenters is of great potential of energy saving via heat recovery mainly using the latent heat of condensation of the water vapour involved. This study reveals the usage possibility of a packed bed column for the heat recovery from the exhaust air of the stenter. An experimental investigation was carried out with a laboratory‐scale counter flow packed bed column. Additionally, an exergetic evaluation of the system was performed. Water inlet temperature and relative humidity ratio of the exhaust air are the main factors that affect the water outlet temperatures and efficiency of the system. It was observed that a decrease in the water inlet temperature increases the recovered exergy; however, water outlet temperature is not significantly affected by the inlet temperature of the water. The exergy efficiency of the system increases with the increase in the relative humidity ratio of the exhaust air. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the exergy analysis of the single layer drying process of laurel leaves in a ground-source heat pump drying cabinet, which was designed and constructed in the Solar Energy Institute, Ege University, Izmir, Turkey. The effects of drying air temperature on exergy losses, exergy efficiencies and exergetic improvement potential of the drying process are investigated. The results have indicated that exergy efficiencies of the dryer increase with rising the drying air temperature. Moreover, the laurel leaves are sufficiently dried at the temperatures ranging from 40 to 50°C with relative humidities varying from 16 to 19% and a drying air velocity of 0.5 m s−1 during the drying period of 9 h. The exergy efficiency values are obtained to range from 81.35 to 87.48% based on the inflow, outflow and loss of exergy, and 9.11 to 15.48% based on the product/fuel basis between the same drying air temperatures with a drying air mass flow rate of 0.12 kg s−1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
以燃料重整的固体氧化物燃料电池发电系统为研究对象,通过数值模拟方法对固体氧化物燃料电池发电系统的性能、(火用)损、(火用)效率以及多变量运行参数优化进行了分析。研究结果表明:重整反应中燃料利用系数、电池工作温度、水碳比、电堆电流密度等参数对系统性能影响显著;电堆工作在不同电流密度下都有其对应的最佳工作温度、最佳燃料利用系数工况点;水碳比会改变重整反应产氢量,从而影响电化学反应速率,空气加热器的(火用)损所占份额最大;优化后的系统效率及(火用)效率为0.480 9和0.462 6,效率提升约4%。  相似文献   

14.
In this experimental study, solar energy was stored daily using the volcanic material with the sensible heat technique. The external heat collection unit consisted of 27 m2 of south‐facing solar air collectors mounted at a 55° tilt angle. The dimensions of the packed‐bed heat storage unit were 6 × 2 × 0.6 m deep. The packed‐bed heat storage unit was built under the soil. The heat storage unit was filled with 6480 kg of volcanic material. Energy and exergy analyses were applied in order to evaluate the system efficiency. During the charging periods, the average daily rates of thermal energy and exergy stored in the heat storage unit were 1242 and 36.33 W, respectively. Since the rate of exergy depends on the temperature of the heat transfer fluid and surrounding, the rate of exergy increased as the difference between the inlet and outlet temperatures of the heat transfer fluid increased during the charging periods. It was found that the average daily net energy and exergy efficiencies in the charging periods were 39.7 and 2.03%, respectively. The average daily net energy efficiency of the heat storage system remained nearly constant during the charging periods. The maximum energy and exergy efficiencies of the heat storage system were 52.9 and 4.9%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A novel hydrogen-fueled power plant with inherent CO2 capture based on calcium looping process is proposed in this paper. The analyzed system has been evaluated from the energy and exergy points of view, it enables determination of the contribution of main component to the total exergy loss. The results show that energy and exergy efficiencies of the system are 42.7% and 42.25% respectively, combustion chamber and regenerator are responsible for large exergy destructions, mainly due to irreversibilities associated with the combustion reactions, they have great potential for system efficiencies improvements. The effects of various air pressure ratios and gas turbine inlet temperatures on the system thermodynamic performance are also presented. The thermodynamic efficiencies increase with the increase in air pressure ratios and gas turbine inlet temperatures.  相似文献   

16.
A simulation code was developed to predict the batch drying performance of a packed bed of particles, e.g. cylinders or slices of carrot, apples, etc., subjected to time-varying air conditions. This model allows for shrinkage of the particles. The time-dependent inlet drying air conditions permit the simulation of the case of a solar dryer in which the inlet air temperature is necessarily a function of the hour of the day. All the parameters involved in the model were obtained independently from experimental solar dryer data. The results compared well with published experimental data for solar drying of diced carrot. Effects of various key parameters of this process are presented and discussed.  相似文献   

17.
Abdul Khaliq  Ibrahim Dincer 《Energy》2011,36(5):2662-2670
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters.  相似文献   

18.
As a promising sludge handling alternative capable of utilizing the secondary energies in industrial environments, we investigated the use of a novel pilot‐scale cyclone dryer for processing industrial mixed sludge from the forest industry. Attainable sludge dry solids contents (%) and respective specific energy consumption of drying (kWh kg?1 H2O) were successfully modelled by response surface methodology based on a constructed design of experiments. Predicted sludge dry solids and the specific energy consumption of drying varied between <30–65% and <0.4–1.8 kWh kg?1 H2O depending on controlled inlet air temperature, sludge feeding rate and humid air recirculation levels. The response models were further optimized for efficient combustion of processed sludge with inlet air temperatures corresponding to potentially available secondary heat. According to the results, energy efficient drying of mixed sludge with a specific energy consumption <0.7 kWh kg?1 H2O can be performed with inlet air temperatures ≥60 °C corresponding with pilot‐scale feeding capacities between 300–350 and 550 kg h?1 depending on inlet air temperature. These findings suggest that the introduction of novel drying systems capable of utilizing the available secondary energies of industrial environments could significantly improve the energy efficiency of sludge drying and potentially allow considerable cost savings for industrial operators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The present study aims to establish the optimal performance parameters for the maximum exergy delivery during the collection of solar energy in a flat-plate solar air heater. The procedure to determine optimum aspect ratio (length to width ratio of the absorber plate) and optimum duct depth (the distance between the absorber and the bottom plates) for maximum exergy delivery has been developed. It is known that heat energy gain and blower work increase monotonically with mass flow rate, while the temperature of air decreases; therefore, it is desirable to incorporate the quality of heat energy collected and the blower work. First it is proved analytically that the optimum exergy output, neglecting blower work, and the corresponding mass flow rate depend on the inlet temperature of air. The energy and exergy output rates of the solar air heater were evaluated for various values of collector aspect ratio (AR) of the collector, mass flow rate per unit area of the collector plate (G) and solar air heater duct depth (H). Results have been presented to discuss the effects of G, AR and H on the energy and exergy output rates of the solar air heater. The energy output rate increases with G and AR, and decreases with H and the inlet temperature of air. The exergy-based evaluation criterion shows that performance is not a monotonically increasing function of G and AR, and a decreasing function of H and inlet temperature of air. Based on the exergy output rate, it is found that there must be an optimum inlet temperature of air and a corresponding optimum G for any value of AR and H. For values of G lesser than optimal corresponding to inlet temperature of air equals to ambient, higher exergy output rate is achieved for the low value of duct depth and high AR in the range of parameters investigated. If G is high, for an application requiring less temperature increase, then either low AR or high H would give higher exergy output rate.  相似文献   

20.
In this paper, the exergy flow and exergy efficiency of a 3 kW proton-exchange-membrane fuel cell were investigated, and the regional characteristic of the distributed energy system was considered. In the environmental temperature range of 263–313 K, the difference in the total efficiency of the proposed system was 6%. On the other hand, the difference in the exergy total efficiency of the same temperature range was 30%. Moreover, as a result of examining how to improve the exergy efficiency of this system, certain improvement methods were proposed: (a) preheat the city-gas and air supplied to the system using exhaust heat and raise the combustion temperature; (b) preheat the water supplied to the system using exhaust heat; (c) change the catalyst material of each unit and reduce the amount of cooling of the reformed gas; and (d) examine the combined cycle power generation. The exergy efficiency, in the case of introducing the proposed system into individual homes in Sapporo, Tokyo, and Kagoshima, was evaluated. Consequently, when the system was introduced into a community with low outside air temperatures, exergy efficiency increased compared with communities with high outside air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号