首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 °C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 °C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1–3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the 4T16A1 transition of Mn2+ ion.  相似文献   

2.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

3.
Well dispersed Fe3O4 nanoparticles with a mean diameter of about 160 nm were synthesized by a simple hydrothermal method in the presence of sodium sulfate. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectrum, and Fourier transform infrared spectra (FTIR). Electrochemical properties of the nanostructured Fe3O4 as cathode electrodes of lithium ion battery were studied by conventional charge/discharge tests, showing a high initial discharge capacity of 1267 mA h g− 1 at a current density of 0.1 mA cm− 2.  相似文献   

4.
Trimanganese tetraoxide (Mn3O4) nanoparticles have been synthesized via hydrothermal process. Nevertheless, homogeneous nanoparticles of Mn3O4 with platelet lozange shape were obtained. The crystallite size ranged from 40 to 70 nm. The Mn3O4 product was investigated by X-ray diffraction, transmission electron microscopy (MET), and impedance spectroscopy. Electrical conductivity measurements showed that the as-synthesized Mn3O4 nanomaterial has a conductivity value which goes from 1.8 10−7 Ω−1 cm−1 at 298 K, to 23 10−5 Ω−1 cm−1 at 493 K. The temperature dependence of the conductivity between 298 and 493 K obeys to Arrhenius law with an activation energy of 0.48 eV.  相似文献   

5.
The wurtzite-type Zn0.99−xMn0.01CuxS (x = 0, 0.003, 0.01) nanowires were prepared by a simple hydrothermal method at 180 °C. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron micrograph (FESEM) and X-ray photoelectron spectrum (XPS). The results showed that both the Mn2+ and Cu2+ ions substituted for the Zn2+ sites in the host ZnS. The ethylenediamine-mediated template was observed, which was used to explain the growth mechanism of the nanowires. The color-tunable emission can be obtained by adjusting the concentrations of Mn2+ and Cu2+ ions. The ferromagnetism was observed around room temperature.  相似文献   

6.
Novel vanadium dioxide nanorods were fabricated from V2O5 in the presence of a reducing agent, the poly(diallyldimethylammonium chloride) (PDDA) via a hydrothermal method at 180 °C for 48 h. The samples produced were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FTIR), nitrogen adsorption (BET) and thermogravimetry (TG/DTG). The nanorods obtained are approximately 50 nm wide and from 300 to 500 nm long and presents high surface area (42 m2 g−1). The nanocrystalline B phase VO2 is not produced by hydrothermal treatment in the absence of the PDDA polyelectrolyte.  相似文献   

7.
The ultrafine Mn2SnO4 nanoparticles with diameters of 5-10 nm have been prepared by thermal decomposition of precursor MnSn(OH)6. The MnSn(OH)6 nanoparticles precursor was synthesized by a hydrothermal microemulsion method. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and electron diffraction have been employed to characterize the crystal structures and morphologies of the as-prepared samples. High-resolution transmission electron microscopy observations revealed that the as-synthesized nanoparticles were single crystals. The thermal characterization was studied by differential thermal analysis and thermogravimetry analysis measurements. Electrochemical test showed that the Mn2SnO4 nanoparticles exhibited a high initial charge-discharge capacity of 1320 mAh/g.  相似文献   

8.
Spinel-type Cu-doped Mn3O4 microcrystals with various shapes were synthesized by hydrothermal method. The interrelation between the preparative conditions and the composition, structure, and morphology of the products were investigated using various analytical techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis. Results revealed that the introduction of Cu2+ ions into the reaction system promoted the formation of single phase Cu-doped Mn3O4. A gradual shape evolution from polyhedron to octahedron occurred upon increasing the additive copper content. Complete decolorization of organic dye (methylene blue) aqueous solution was achieved by treating the dye with Cu-doped Mn3O4 in acidic media, which shows the possible application of doped Mn3O4 as effective reagents for the degradation of organic contaminants in water.  相似文献   

9.
In2O3 octahedrons were synthesized by carbothermal reduction method. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis (SAED) and room-temperature photoluminescence (PL) spectra. The results show that the products are single-crystalline In2O3 octahedrons with the arrises length in the range of 400-3000 nm. The PL spectra displays blue and green emission peaks which can be indexed to default and oxygen vacancies; blue-shift and intensity decrease was observed when excitation wavelength decreases from 380 nm to 325 nm. The growth mechanism of the In2O3 octahedrons is discussed.  相似文献   

10.
Cadmium vanadium oxides (Cd2V2O7) and Cadmium carbonates (CdCO3) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), Raman spectroscopy, infrared spectrometer (IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, morphology and chemical state of the samples, respectively. The photoluminescence (PL) properties of the as-synthesized Cd2V2O7 and CdCO3 were measured at room temperature using an excitation wavelength of 325 nm. The Cd2V2O7 shows two visible light emission centers located at 589 and 637 nm, which are supposed to be relevant to local defects in Cd2V2O7. The CdCO3 shows three emission centers located at 408, 530 and 708 nm, which are supposed to be relevant to the electron transition from the conduction band to valence band and defect related energy level.  相似文献   

11.
Mn3O4 nanoparticles were prepared by a novel oxidation-precipitation method at a low temperature. The crystal phase, microstructure, surface area and electrochemical properties of the products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2 adsorption-desorption isotherms and cyclic voltammetry (CV). The results indicate that the addition of citric acid and tartaric acid remarkably reduced the particle size and increased the specific surface area of Mn3O4 nanoparticles. The samples prepared by the addition of citric acid and tartaric acid have a narrow particle size distribution of 5-10 nm, a surface area of 119 and 122 m2/g, and a capacitance of 171 and 172 F g−1, respectively.  相似文献   

12.
Monodisperse CeO2 nanocubes have been fabricated via an acrylamide-assisted hydrothermal route. NH3 and acrylic acid from the hydrolysis of acrylamide act as OH provider and capping reagent, respectively. The structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared (FT-IR). The products have a cubic morphology with a mean size of 200 nm. The possible formation mechanism has been discussed based on the experimental results.  相似文献   

13.
NiFe2O4 nanoparticles and nanorods were synthesized by a facile hydrothermal treatment of Ni(DS)2 (Nickel dodecyl sulfate), FeCl3, and NaOH aqueous solution at 120 °C. The products were characterized by powder X-ray diffraction, transmission electron microscopy, and selected area electron diffraction. The magnetic properties were evaluated using a vibrating sample magnetometer. The probable mechanism of the formation of NiFe2O4 nanoparticles and nanorods was discussed.  相似文献   

14.
Large-scale fan-shaped rutile TiO2 nanostructures have been synthesized by means of a simple hydrothermal method using only TiCl4 as titanium source and chloroform/water as solvents. The physicochemical features of the fan-shaped TiO2 nanostructures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), nitrogen absorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). Structural characterization indicates that the fan-shaped TiO2 nanostructures are composed of several TiO2 nanorods with diameters of about 5 nm and lengths of 300-350 nm. The average pore size and BET surface area of the fan-shaped TiO2 nanostructures are 6.2 nm and 59 m2/g, respectively. Optical adsorption investigation shows that the fan-shaped TiO2 nanostructures possess optical band gap energy of 3.11 eV.  相似文献   

15.
Hongrui Peng 《Materials Letters》2009,63(16):1404-1406
MnV2O6 nanostructures including nanorods, nanobelts, and nanosheets, have been synthesized by a facile hydrothermal reaction between Mn(CH3COO)2·4H2O and commercial V2O5. The synthesized products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of synthetic parameters, such as, reaction time, temperature and medium, on the morphologies of the resulting products have been investigated. As the reaction temperatures increase from 120 °C to 180 °C, MnV2O6 nanorods and nanobelts are obtained, respectively. The time-dependent experimental results at 180 °C reveal that the sizes of MnV2O6 nanobelts increase gradually with the reaction proceeding. Interestingly, as the reaction is carried out with the aid of H2O2 solution, flower-like MnV2O6 nanosheets are formed.  相似文献   

16.
Monodisperse α-Fe2O3 nanoparticles have been successfully prepared by hydrothermal synthetic route using FeCl3, CH3COONa as reagents and reacted at 200 °C for 12 h. The morphology and structure of products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the α-Fe2O3 nanoparticles were single-crystalline hexagonal structure and average diameters were about 80 nm. Magnetic properties have been detected by a vibrating sample magnetometer at room temperature. The nanoparticles exhibited a ferromagnetic behavior with the coercive force (Hc), saturation magnetization (Ms) and remanent magnetization (Mr) was 185.28 Oe and 0.494 emu/g, 0.077 emu/g.  相似文献   

17.
Rutile structure SnO2 nano-single crystals have been synthesized using tin (IV) chloride as precursor by the modified hydrothermal method. Controllable morphology and size of SnO2 could be obtained by adjusting the concentration of the hydrochloric acid. The SnO2 nanoparticles were characterised by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods. The SnO2 nanoparticles as anode materials in lithium-ion batteries exhibit high lithium storage capacities. The reversible capacities are more than 630 mA h g− 1.  相似文献   

18.
Gadolinium-activated Y2O3 phosphor has been prepared by combustion process in a short time of 5 min. The phosphors are well characterized by X-ray diffraction, scanning electron microscopy, and energy-dispersive analysis of X-ray. The as-prepared Y2O3:Gd powder shows that all the peaks are due to the Y2O3 cubic phase. Upon UV light excitation (276 nm), the phosphor exhibits a strong and sharp UV emission at 314 nm and is ascribed to 6 \textP 7/ 2  ?  8 \textS 7/ 2 ^{ 6} {\text{P}}_{ 7/ 2} \, {\to}\, ^{ 8} {\text{S}}_{ 7/ 2} transition of Gd3+ ions. The EPR spectrum of Y2O3:Gd phosphor exhibits resonance signals with effective g values at g = 1.96, g = 2.88, and g = 6.08 and are attributed to Gd3+ ions located at sites with weak, intermediate, and strong cubic symmetry fields, respectively. It is observed that the population of spin levels (N) and linewidth depends on temperature. The paramagnetic susceptibility (χ) is also evaluated as a function of temperature and discussed.  相似文献   

19.
Spinel CoCo2O4 nanotubes and porous nanostructures have been synthesized by a novel hydrothermal method from Co(NO3)2·6H2O in mixtures of ammonia and cyclohexane at 220 °C. The morphology and phase of CoCo2O4 can be controlled by adjusting the experimental parameters that include the Co2+ concentration and the volume ratio of ammonia to cyclohexane. X-ray diffraction and transmission electron microscopy analyses were used to characterize the products. The formation mechanisms of CoCo2O4 nanostructures is proposed in detail. The electrochemical properties of the as-prepared samples have been investigated.  相似文献   

20.
Large-scale VO2(B) nanobelts have been synthesized by hydrothermal strategy via one-step method using V2O5 as vanadium source and C6H5-(CH2)n-NH2 with n = 2 and 4 (2-phenylethylamine and 4-phenylbutylamine) as structure-directing templates. The composition and morphology of the nanobelts were established by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The as-obtained VO2(B) nanobelts have a length of 3-10 μm, a wideness of 100-375 nm and a thickness of 30-66 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号