首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/N-苯基马来酰亚胺复合材料(PA6/SMA/N-PMI),利用差示扫描量热法(DSC)、热重分析(TGA)及力学性能测试等手段研究了N-PMI用量对PA6/SMA/N-PMI复合材料熔融结晶行为、热性能以及力学性能的影响。结果表明:复合材料的最大分解温度较纯PA6有所提高;随着N-PMI用量的增加,复合材料的结晶温度、结晶度以及熔融焓均逐渐降低;当N-PMI用量为15份时,复合材料的弯曲强度、弯曲模量、拉伸强度以及热变形温度均达到最大值,分别为101.0、2 892、71.6 MPa以及56.6℃,较纯PA6分别提高了11.0%、21.3%、3.1%和10.0%。  相似文献   

2.
采用熔融共挤制备了尼龙6(PA6)/苯乙烯-马来酸酐共聚物(SMA)共混物,利用差示扫描量热法、热重分析、热变形温度测试及力学测试等手段研究了SMA含量对PA6/SMA共混物熔融结晶行为、热性能及力学性能的影响。结果表明,SMA的加入使共混物的熔融温度、结晶温度及结晶度降低;当SMA用量为5份时,共混物最大分解温度较纯PA6提高了33.5℃;共混物的弯曲强度和弯曲模量在SMA用量为2.5份时达到最大,分别为115.0、3 227 MPa,比纯PA6提高了26.4%、37.0%,拉伸强度在SMA用量为5份时达到最大87.5 MPa,比纯PA6提高了25.9%。  相似文献   

3.
以聚酰胺6(PA6)为基体、自制N-苯基马来酰亚胺-马来酸酐二元共聚物(NMA)为耐热改性剂,通过熔融共混法制备了PA6//NMA共混材料。并采用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了NMA用量对PA6/NMA共混物熔融结晶行为、热性能及力学性能的影响。结果表明:随着NMA用量的增加,PA6/NMA共混物的熔融温度、结晶温度、结晶度以及熔融焓均逐渐降低,而且共混物的最大分解温度较纯PA6显著提高;随着NMA用量的增加,PA6/NMA共混物的力学性能及热性能均明显改善,其中当NMA用量为10份时,共混物的弯曲强度、弯曲模量、拉伸强度及热变形温度分别增至113.8 MPa、3 146 MPa、80.4 MPa以及71.5℃,较纯PA6提高了25.1%、31.9%、15.7%和27.5%;另外,随着NMA用量的增加,共混物的熔体流动速率(MFR)大幅下降,其中当NMA用量增至10份时,共混物的MFR降至5.3 g/10min。  相似文献   

4.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/长玻璃纤维(PA6/SMA/LGF)复合材料,利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了LGF含量对PA6/SMA/LGF复合材料熔融结晶行为、热性能及力学性能的影响。结果表明:随着LGF含量的增加,PA6/SMA/LGF复合材料的结晶温度、结晶度以及熔融焓均先升高再降低,而且复合材料的最大分解温度较纯PA6显著提高;另外,随着LGF含量的增加,PA6/SMA/LGF复合材料的热性能及力学性能均明显改善,其中当LGF含量为27%时,复合材料的热变形温度、弯曲强度、弯曲模量、拉伸强度和冲击强度分别增至206.0℃、227.8 MPa、7 335 MPa、180.6 MPa和18.7 kJ/m2。  相似文献   

5.
采用自制耐热改性剂N-苯基马来酰亚胺-马来酸酐二元共聚物(NMA)与纳米有机蒙脱土(nanoOMMT)复配对聚酰胺(PA)6进行共混改性,研究了不同m(NMA)∶m(nano-OMMT)对PA 6熔融结晶行为、热性能及力学性能的影响。结果表明:nano-OMMT剥离分散在PA 6基体中;随着nano-OMMT含量增加,PA 6/NMA/nano-OMMT复合材料的熔融温度、结晶温度、结晶度及熔融焓均先升后降;m(NMA)∶m(nano-OMMT)为8∶2时,复合材料弯曲强度、弯曲模量、拉伸强度和负荷变形温度均达最大,分别为117.1,3 301,80.5 MPa及82.7℃,较不加nano-OMMT分别提高21.2%,25.0%,12.9%,27.8%。  相似文献   

6.
采用双螺杆挤出方法制备尼龙1012(PA1012)/苯乙烯-马来酸酐(SMA)共混物,研究了SMA含量对PA1012/SMA共混物力学性能的影响,并利用扫描电子显微镜(SEM)研究了PA1012/SMA共混物的微观形态。结果表明,加入SMA,共混物冲击强度呈先增加后降低趋势,共混物拉伸强度和弹性模量降低。当SMA含量为0.5%时,PA1012/SMA共混物冲击强度最大,高达298 J/m,为韧性断裂,力学性能较优;PA1012/SMA共混物比纯PA1012结晶温度升高10℃,有利于结晶;SEM观察到随着SMA分散相粒子含量的增加,在PA1012基质中分散更明显且均匀。  相似文献   

7.
采用熔融共混法制备PA6/NMA/EP共混物;利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度测试仪、微机控制电子万能试验机等对其性能进行测试,并研究了EP与PA6的质量比对PA6/NMA/EP共混物的结晶行为、热性能及力学性能的影响。结果表明:随着EP与PA6的质量比的增加,PA6/NMA/EP共混物的结晶度先减小后增加,但热稳定性呈现先增加后减小的趋势;当EP与PA的质量比为2%时,PA6/NMA/EP共混物的热变形温度和拉伸强度均达到最大值72.8℃和77.7 MPa,分别较纯PA6的提高了37.6%和11.8%;而弯曲强度随EP与PA6的质量比的增加呈现逐渐增大的趋势。  相似文献   

8.
以PP-g-MAH作增容剂,通过熔融共混制备了PA6/PBT共混物。采用DSC研究共混体系的结构性能,通过熔融指数,拉伸强度和抗冲击强度测试研究共混体系的力学性能。结果表明:当PP-g-MAH添加量达到2份时,PA6/PBT/PP-g-MAH共混物拉伸强度提高了14.8%,冲击强度提高了43.8%,结晶温度、熔融温度降低,熔体流动速率减小。  相似文献   

9.
N-苯基马来酰亚胺与马来酸酐的共聚物(NMA)对尼龙(PA)6具有良好的耐热改性作用,纳米Si O2能够较好地改善PA6的力学性能。采用自制的NMA与纳米Si O2以不同质量配比复配,对PA6进行共混改性,利用差示扫描量热法、热重分析、热变形温度和力学性能等表征方法研究了不同复配比例对PA6热性能及力学性能的影响。结果表明,随着纳米Si O2含量增加,PA6/NMA/纳米Si O2复合材料的熔融温度、结晶温度、结晶度及熔融焓均呈现先上升后下降的趋势;当NMA与纳米Si O2的质量比为10∶0时,复合材料的热稳定性最好;当NMA与纳米Si O2的质量比为8∶2时,复合材料的弯曲强度、弯曲弹性模量、拉伸强度和热变形温度均达到最大值,分别为108.3,2 989,77.6 MPa以及68.4℃,较纯PA6分别提高了19.0%,25.3%,11.7%和19.2%。随着纳米Si O2含量的增加,复合材料的熔体流动速率呈现先增加后减小的趋势。  相似文献   

10.
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。  相似文献   

11.
采用熔融共混方法制备一系列尼龙1012(PA1012)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)/苯乙烯-马来酸酐共聚物(SMA)共混物,利用冲击试验仪、示差扫描量热仪(DSC)和扫描电子显微镜(SEM)等手段,探究增容剂SMA和ABS的添加量对PA1012/ABS共混物性能的影响。结果表明,当SMA含量为5%且ABS含量为50%时,PA1012/ABS/SMA共混物的缺口冲击强度最优,为669 J/m;随着SMA含量增加,结晶温度有先增大后减小趋势,并且与纯PA1012相比,PA1012/ABS/SMA共混物结晶温度升高了10℃,促进PA1012结晶;SMA加入后,ABS分散相粒子尺寸减小,PA1012和ABS间界面黏结作用增强,证实SMA对PA1012/ABS有明显增容作用。  相似文献   

12.
MAH对LDPE-g-MAH/PA6性能的影响   总被引:1,自引:0,他引:1  
采用熔融接枝共混法制备了马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)及马来酸酐接枝低密度聚乙烯/尼龙6共混物(LDPE—g-MAH/PA6),研究了共混物的流变性能、力学性能和吸水性等。结果表明,共混物有较好的相容性,力学性能、耐热性等均较低密度聚乙烯有所改善。当LDPE-g-MAH中MAH用量为1份,共混物中PA6用量为40份时,共混物的力学性能最好。  相似文献   

13.
接枝率对PVC/PA6-g-SMA共混物结构与性能的影响   总被引:2,自引:0,他引:2  
采用熔融共混方法制备了聚氯乙烯(PVC)与不同接枝率苯乙烯-马来酸酐共聚物(SMA)接枝改性聚酰胺6(PA6-g-SMA)的共混物,研究了PA6-g-SMA接枝率对PVC/PA6-g-SMA共混物力学性能及凝聚态结构的影响。结果表明,接枝率越高,PA6-g-SMA与PVC的相容性越好,在PVC基体中能以更小的相畴均匀分散,对PVC的增韧增强作用越明显;当PA6-g-SMA的接枝率为5.12 %,添加量为15 %(质量分数,下同)时,共混物的冲击强度为64.7 kJ/m2,拉伸强度为55 MPa。  相似文献   

14.
采用熔融挤出的方法制备了聚酰胺6/氯化锂/苯乙烯接枝马来酸酐(PA6/LiCl/SMA)复合材料,研究了SMA用量对PA6/LiCl/SMA复合材料的结晶熔融行为及性能的影响。结果表明:SMA的加入会促进Li+与PA6中酰胺基团的络合作用,破坏PA6分子链间的氢键,另外SMA自身能与PA6分子链发生接枝反应,在双重作用下使复合材料的熔点降低到185.53℃。通过DSC和XRD发现:SMA的加入会促使PA6/LiCl/SMA复合材料的结晶形态由α晶型向γ晶型转变,并能有效提高复合材料的力学性能,当SMA用量为3 phr时,其拉伸强度比未添加SMA时提高了53.02%,冲击强度也有所提高,但复合材料的熔体流动速率会有所下降。  相似文献   

15.
采用原位熔融接枝法制备了接枝率为0.45%的POE-g-GMA相容剂,并熔融挤出制备了PA6/POE-g-GMA/POE共混物。同时利用DSC、XRD、TG、SEM以及微机控制万能电子试验机测试了共混物的微观结构、热性能及力学性能。结果表明,当POE-g-GMA、POE用量均为10%时,共混体系的结晶温度有所降低,分解峰温度升高,拉伸强度为58.4 MPa,简支梁缺口冲击强度为14.2 kJ/m2。相比纯PA6和PA6/POE的冲击强度分别提升了132.8%、71.1%,拉伸强度小幅降低。自制相容剂可显著降低POE在PA6基体中的分散性,降低POE分散相尺寸,共混物呈现“韧窝”态的韧性断裂特征。  相似文献   

16.
采用熔融共混方法制备了尼龙6 (PA6)/碳化硅(SiC)复合材料;研究了不同SiC添加量对PA6/SiC复合材料的力学性能、结晶行为、断面形貌以及动态力学性能的影响。力学性能结果表明,加入SiC后,复合材料的力学性能明显提高,当SiC含量为5 phr时,复合材料的拉伸强度达到最大值70. 47 MPa,较PA6纯料提高了49. 51%,冲击强度达到7. 72 kJ/m~2,较PA6纯料提高了17. 3%,断裂伸长率从PA6纯料的2%提高到36. 6%。动态力学行为的测试结果显示,加入SiC后,在测试温度范围内,储能模量(E')均高于PA6纯料。DSC结果表明,加入SiC后,复合材料的结晶温度向高温移动,结晶度提高,并且结晶半峰宽降低,表明SiC起到了成核剂的作用,促进了PA6材料的结晶。SEM图像显示,SiC的加入促使PA6断面出现空穴化现象,产生剪切屈服,从而达到增韧效果。  相似文献   

17.
采用熔融共混的方法制备了聚酰胺1010/聚丙烯(PA1010/PP)共混物,通过扫描电镜、力学性能和差示扫描量热等方法研究了剪切作用下马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)和马来酸酐接枝聚丙烯(PP-g-MAH)对PA1010/PP共混物的增容作用。结果表明,同样条件下,PP-g-MAH增容体系的相区尺寸较小,相界面更模糊,PP相的结晶温度和结晶度明显提高,共混物的拉伸强度和冲击强度均高于非增容体系。而POE-g-MAH增容体系的相区尺寸相对较大,PP相的结晶温度和结晶度明显降低,共混物只有冲击强度明显高于非增容体系,拉伸强度略低于非增容体系。  相似文献   

18.
采用二元乙丙橡胶接枝马来酸酐(EPM-g-MAH)作为二元乙丙橡胶(EPM)增韧聚酰胺6(PA6)的增容剂,研究了PA6/EPM/EPM-g-MAH三元共混物的流变性能、力学性能和微观形态。结果表明,EPM-g-MAH可以与PA6发生增容反应生成接枝共聚物,改善了PA6和EPM的界面相容性。随着EPM-g-MAH含量的增加,共混物中分散相粒径更加细化,共混物的熔融峰温下降,缺口冲击强度显著提高,当EPM/EPM-g-MAH的配比为10/10时,共混物的冲击强度达到最大为47 kJ/m2,比纯PA6提高了8倍。  相似文献   

19.
利用双螺杆挤出机制备了尼龙6(PA6)/芳纶浆粕(PPTA-pulp)/马来酸酐接枝聚合物复合材料,研究了两种马来酸酐接枝物(POE-g-MAH、LLDPE-g-MAH)对复合材料的力学性能、断面形态以及结晶性能的影响。其中POE-g-MAH能明显的提高复合材料PA6/PPTA-pulp的冲击强度和断裂伸长率,POE-g-MAH含量为3%时,PA6/PPTA-pulp/POE-g-MAH的拉伸强度和弯曲强度达到实验范围内的最佳值,此时其断裂伸长率和冲击强度较未加马来酸酐接枝物体系,分别提高了57.9%和28.8%。3%马来酸酐接枝物的加入有效增强了PA6和PPTA-pulp间的界面结合力,对复合材料的结晶具有诱导作用,且并不会改变PA6的晶型。  相似文献   

20.
分子筛负载马来酸酐及改性PP的研究   总被引:1,自引:1,他引:0  
通过物理吸附将马来酸酐(MAH)负载在分子筛上,经母料法熔融制备了PP/分子筛复合材料.采用DSC、POM和电子拉力机等方法对复合材料的结晶行为和力学性能进行研究.结果表明:分子筛对PP结晶起到异相成核作用,随分子筛用量增加,复合材料的结晶温度由纯PP的116.3℃提高到119.5℃,结晶热焓逐渐减小,熔融热焓逐渐增大,复合材料的拉伸强度、弯曲强度及弯曲模量有不同程度的提高.低MAH负载量的分子筛(质量分数3%)有助复合材料力学性能的进一步提高,复合材料的拉伸强度、弯曲强度、弯曲模量及冲击强度分别由纯PP的35.3 MPa、45.2 MPa、1.47 GPa及2.24 kJ/m2提高到37.6 MPa、53.5 MPa、1.85 GPa及3.01 kJ/m2.MAH具有诱导PP形成β晶的倾向,150℃附近的β晶熔融峰强度随MAH用量增加而提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号