首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gasdynamic structure of a hypersonic molecular nitrogen flow in a plane channel whose opposite surfaces are segmented electrodes for generating a continuous surface glow discharge is investigated using a two-dimensional computational model. The electrodynamic structure of the surface glow discharge in the hypersonic rarefied gas flow (distributions of the charged particle concentrations, current density, and electric potential) is studied. A two-dimensional conjugate electrical-gasdynamic model consisting of the continuity, Navier-Stokes, and energy conservation equations and the chargedparticle continuity equations in the ambipolar approximation is proposed. The real thermophysical and transport properties of molecular nitrogen are taken into account. It is shown that using a surface glow discharge in a hypersonic rarefied gas flow makes it possible effectively to modify the shock-wave flow structure and hence to consider this type of discharge as additional tool for controlling rarefied gas flows.  相似文献   

2.
低雷诺数俯仰振荡翼型等离子体流动控制   总被引:2,自引:2,他引:0  
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   

3.
The non-Navier-Stokes continuum models proposed earlier on the basis of a modification of the gasdynamic equations of the higher (starting from the Burnett) approximations of the Chapman-Enskog method for shock wave flow are generalized to include the case of three-dimensional flows of a simple (monatomic) gas. The models are tested on the problems of shock wave structure and cylindrical Couette rarefied gas flow.  相似文献   

4.
A model configuration of a hypersonic vehicle realizing the principle of compression convergence along spatially-convergent directions of the entire jet captured by an air-intake is studied. The configuration includes a convergent air-intake, whose gasdynamic design is performed using the axisymmetric supersonic flow in an internal convergent channel. The air-intake is integrated with the swept transversely-concave nose surface of the vehicle, which forms at high supersonic velocities a three-dimensional compression flow, also convergent. The results of numerical and experimental studies at freestream Mach numbers 4 and 6 are presented; they reveal the salient features of the gasdynamic pattern of the flows near the nose and the external compression wedge of the air-intake, as well as in the internal channel.  相似文献   

5.
6.
The mathematical model of a gasdynamic discontinuity is used in the area of study concerning gas flows with large gradients of gasdynamic functions. Gasdynamic functions before and after the discontinuity meet non-linear algebraic equations called the dynamic compatibility conditions on the discontinuities. Different modes of shock wave structures forming as a result of regular or irregular interference of the incoming discontinuities of different types are described. Ranges of the initial flow parameters definition such that either shock wave structures of different modes take place or interference equations have no solutions are determined. Most attention is given to arbitrary triple shock-wave configurations. Their classification is proposed. Differential characteristics of the steady flow are studied. The notion “differential characteristics” includes first derivatives of the fundamental gasdynamic parameters with respect to natural coordinates and curvatures of the discontinuities surfaces. Effect of unsteadiness on the triple-shock configuration is examined. Some problems arising at creation of complete local theory of steady and propagating gasdynamic discontinuities interference are formulated.  相似文献   

7.
The possibility of generating electric power in a plane model of an integral high-speed hydrogen-burning jet engine by mounting a magnetogasdynamic (MHD) generator at the combustion chamber exit is discussed. Attention is concentrated on clarifying the effect of MHD energy extraction from the stream on the aircraft’s thrust characteristics. The internal and external flows are simulated numerically. The two-dimensional supersonic gasdynamic flow inside the engine (in the air-intake, combustion chamber, MHD generator, and nozzle) and the supersonic flow past the aircraft are described on the basis of the complete averaged system of Navier-Stokes equations (in the presence of turbulence), which includes MHD force and heat sources, a one-parameter turbulence model, the electrodynamic equations for an ideal segmented MHD generator, and the equations of the detailed chemical kinetics of hydrogen burning in air. The numerical solution is obtained by means of a computer program that uses a relaxation scheme and an implicit higher-order version of the Godunov method. It is shown that MHD electric power generation can be realized without disturbing the positive balance in the relation between the thrust and the drag of the aircraft with the engine operating with allowance for the MHD drag, but with some loss of effective thrust.  相似文献   

8.
This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-modal methods based on the OrrSommerfeld and Squire(OSS) equations that assume simple base flows, this algorithm can be applied to arbitrarily complex base flows. In the proposed algorithm, a reorthogonalization Arnoldi method is used to improve orthogonality of the orthogonal basis of the Krylov subspace generated by solving the linearized forward and adjoint Navier-Stokes(N-S) equations. The linearized adjoint N-S equations with the specific boundary conditions for the channel are derived, and a new convergence criterion is proposed. The algorithm is then applied to a one-dimensional base flow(the plane Poiseuille flow) and a two-dimensional base flow(the plane Poiseuille flow with a low-speed streak)in a channel. For one-dimensional cases, the effects of the spanwise width of the channel and the Reynolds number on the transient growth of perturbations are studied. For two-dimensional cases, the effect of strength of initial low-speed streak is discussed. The presence of the streak in the plane Poiseuille flow leads to a larger and quicker growth of the perturbations than that in the one-dimensional case. For both cases, the results show that an optimal flow field leading to the largest growth of perturbations is characterized by high-and low-speed streaks and the corresponding streamwise vortical structures.The lift-up mechanism that induces the transient growth of perturbations is discussed.The performance of the re-orthogonalization Arnoldi technique in the algorithm for both one-and two-dimensional base flows is demonstrated, and the algorithm is validated by comparing the results with those obtained from the OSS equations method and the crosscheck method.  相似文献   

9.
The jet flows induced around a submerged channel due to the hot inner channel walls and the flow inside the channel are calculated. The formation of high-and low-density regions at the inlet and outlet of the channel is detected. The dependence of the flow rate on the channel orientation relative to the gravity force is analyzed. The onset of coherent flow structures results in the development of unsteady oscillating flows. Natural convection in the fluid is studied using the JoinCAD/FEM program package. The regularized Oberbeck-Boussinesq equations are solved using a finite-element method with the same order of the approximating functions.  相似文献   

10.
A new mixed‐interpolation finite element method is presented for the two‐dimensional numerical simulation of incompressible magnetohydrodynamic (MHD) flows which involve convective heat transfer. The proposed method applies the nodal shape functions, which are locally defined in nine‐node elements, for the discretization of the Navier–Stokes and energy equations, and the vector shape functions, which are locally defined in four‐node elements, for the discretization of the electromagnetic field equations. The use of the vector shape functions allows the solenoidal condition on the magnetic field to be automatically satisfied in each four‐node element. In addition, efficient approximation procedures for the calculation of the integrals in the discretized equations are adopted to achieve high‐speed computation. With the use of the proposed numerical scheme, MHD channel flow and MHD natural convection under a constant applied magnetic field are simulated at different Hartmann numbers. The accuracy and robustness of the method are verified through these numerical tests in which both undistorted and distorted meshes are employed for comparison of numerical solutions. Furthermore, it is shown that the calculation speed for the proposed scheme is much higher compared with that for a conventional numerical integration scheme under the condition of almost the same memory consumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a simple model of an anisotropic incompressible viscous fluid, whose equations of state involve one anisotropic physical constant tensor (in the sense of Oldroyd [1]). Attention is restricted to the case of a fluid that is everywhere transversely isotropic at some given instant, so that the model is essentially one of a liquid with initially just one privileged direction at each point. Transverse isotropy does not persist, however, in some flow situations.Predictions are made for simple shearing flows and for channel and pipe flows with different initial directions of orientation. In some cases, the volume rate of flow under constant pressure-gradient decreases steadily and tends to zero after a long time.  相似文献   

12.
The results of an experimental and theoretical investigation of the interaction between a surface electric discharge and a supersonic air flow in a constant cross-section channel are given. The features of the generation of the surface discharge in the flow are described. A model of the interaction is proposed. The regime of gasdynamic screening of a mechanical obstacle on the channel wall is investigated. Data on the change in the main flow parameters as a result of the generation of a surface discharge are given. The experimental results are compared with the results of calculations based on a simplified model of the interaction.  相似文献   

13.
Supersonic rotational planar and axisymmetric flows of a non-viscous, non-heat-conductive gas with arbitrary thermodynamic properties in the vicinity of a steady shock wave are studied. The differential equations describing the gas flow upstream and downstream of the discontinuity surface and the dynamic compatibility conditions at this discontinuity are used. The gas flow non-uniformity in the shock vicinity is described by the spatial derivatives of the gasdynamic parameters at a point on the shock surface. The parameters are the gas pressure, density, and velocity vector. The derivatives with respect to the directions of the streamline and normal to it, and of the shock surface and normal to it, are considered. Spatial derivatives of all gasdynamic parameters are expressed through the flow non-isobaric factor along the streamline, the streamline curvature, and the flow vorticity and non-isoenthalpy factors. An algorithm for determining these factors of the gas flow downstream of a shock wave is developed. Example calculations of these factors for imperfect oxygen and thermodynamically perfect gas are presented. The influence coefficients of the upstream flow factors on the downstream flow factors are calculated. The gas flow in the vicinity of the shock is described by the isolines of gasdynamic parameters. Uniform planar and axisymmetric flows at different distances from the axis of symmetry are examined; the isobars, isopycnics, isotachs and isoclines are used to characterize the downstream flow behind a curved shock in an imperfect gas.  相似文献   

14.
In [1] it was suggested that for large angles of attack there is formed near the lower surface of a conical body with a smooth transversesection contour a closed (quite limited) region of ellipticity of the conical flow equations. To calculate the mixed transonic gas flow in this region use was made of the method of straight lines, previously used extensively for the solution of other gasdynamic problems [2], Using this method, on some line located entirely in the region of hyperbolicity of the equations, we determined all the gasdynamic quantities which may then be used as the initial data for continuing the calculation in the transonic region. The calculation in the hyperbolic equation region was continued by the method of characteristics. About forty versions were calculated for the flow about elliptic cones, including circular, in a supersonic perfect gas stream at angles of attack from 30 to 50°.The article then discusses the method of characteristics in the form used for the calculations. (All the equations of the method of lines are given in [1].) Also presented are newly obtained formulas for the inclinations of the surfaces of the constant-velocity modulus and constant transverse-flow Mach number on the conical shock wave. Calculation results are presented and these demonstrate basically the qualitative characteristics of the flow about sharp elliptic cones at large angles of attack.  相似文献   

15.
For viscous (barotropic or incompressible) fluids it is shown that, if the vorticity and the viscous force are orthogonal, vortex lines are convected by a vector field which fits with the velocity field when viscosity vanishes (extension of Helmholtz theorem); it is also found that energy remains constant along the field lines of this vector field (extension of Bernoulli theorem).If, moreover, vorticity and velocity are orthogonal too, the magnitude of the vorticity then behaves as the density of a fluid which flows along streamsheets according to this very same vector field. These properties are mainly encountered for plane parallel flows, axially symmetrical flows, spherical flows, but also for some other miscellaneous flow geometries such as unidirectional or radial flows. The set of the former three flows can even be characterized by these properties; that enhances this set of important flow geometries, avails a general view on vorticity behavior, and explains the great simplicity of vorticity equations in these cases. Numerous examples and comments are given for illustrating.  相似文献   

16.
The features of the internal and external flows in high-speed vehicles with a magnetohydrodynamic air-intake ensuring additional deceleration of the supersonic flow are considered. Preliminary investigations carried out earlier showed that this MHD flow control makes it possible significantly to increase the gasdynamic component of the vehicle thrust. However, there are significant negative effects, mainly the development of an additional vehicle drag force associated with the magnetic field. Thus, there arises a complex of interrelated problems with opposite effects on the resulting characteristics of the vehicle. In the present study these questions are investigated both on the basis of developed physicomathematical models and numerical methods and by means of the combined optimization of the internal duct profile and the external configuration of the vehicle. It is shown that a strategy for improving the vehicle characteristics can only be chosen by simultaneously analyzing the features of the internal (magnetohydrodynamic) and external (gasdynamic) flows.  相似文献   

17.
The problem of the interaction between a shock wave and a semi-infinite longitudinal plane layer or a cylindrical channel of finite thickness filled with a low-density gas is studied on the basis the Euler equations. The flow gasdynamics, including qualitatively new, regular and irregular, interaction regimes, are described. New gasdynamic flow elements, such as high-pressure jets with an internal wave structure and layered vortices, are found to exist. It is revealed that the gasdynamic precursor growth is decelerated at long time intervals, due to the flow chocking effect and the vorticity development behind its front.  相似文献   

18.
Complementary experimental and computational study on flow separation delay at a NACA 0015 airfoil affected by a DBD (Dielectric-Barrier-Discharge) plasma actuator is presented. The effect of the DBD plasma-actuator on the flow development towards its appropriate control is accounted through a relevant body force representing a source term in the equation of motion. The spatial distribution of the force is calculated from the time-averaged properties of the experimentally obtained (by particle image velocimetry - PIV) velocity field by applying the Reynolds-Averaged Navier-Stokes equations. The study focusses in particular on the specific plasma-related turbulence production in the equations governing the Reynolds-stress tensor. Prior to studying the airfoil configuration the computational determination of the body force and corresponding turbulence generation rate is analyzed in a wall jet flow induced by the DBD plasma actuator.  相似文献   

19.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Most engineering methods for calculating the properties of plasma generators use similarity theory to derive dimensionless equations to generalize experimental results [1]. Although their accuracy is acceptable for practical calculations, the equations cannot be used for a physical analysis of the local phenomena occurring in the working channel of a plasma generator. In the present paper the experimental data are compared with the results of a calculation of the local and integrated heat and gasdynamic properties of a dc plasma generator with a longitudinally injected arc. The basis of the computational method is a quasi-one-dimensional gasdynamic model of the flow of an electrically conducting gas in the channel of the plasma generator developed and studied in [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 122–126, July–August, 1977.In conclusion, the authors thank G. A. Lyubimov for valuable remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号