首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid crystal optical device made of an optically anisotropic heterostructure is considered. The device consists of a cholesteric liquid crystal (CLC) layer sandwiched by two phase-shifting anisotropic layers of a nematic liquid crystal (NLC). In this structure each of the NLC layers is a quarterwave plate. The problem is solved both by Ambartsumian’s method of layer addition and Muller’s matrix method. The peculiarities of reflection spectra, eigen polarizations, rotation of polarization plane and polarization ellipticity are studied. It is shown that this device can work as a light modulator or a system for obtaining linearly polarized light with electrically tunable rotation of the polarization plane (which is especially important for optical communication), as well as a device for obtaining the linearly polarized light from a non-polarized one.  相似文献   

2.
Chiral liquids rotate the plane of polarization of linearly polarized light and are therefore optically active. Here we show that optical rotation can be observed in the frequency domain. A chiral liquid introduced in a fiber-loop ring resonator that supports left and right circularly polarized modes gives rise to relative frequency shifts that are a direct measure of the liquid's circular birefringence and hence of its optical activity. The effect is in principle not diminished if the circumference of the ring is reduced. The technique is similarly applicable to refractive index and linear birefringence measurements.  相似文献   

3.
A method is developed for analyzing the state of polarization of a plane wave transmitted through a polymer-dispersed liquid-crystal (PDLC) film with nanosized liquid-crystal (LC) droplets. This method is based on the anisotropic-dipole approximation for describing scattering by a separate droplet and on the Foldy-Twersky approximation for describing propagation of light in a film. Equations are obtained that relate the ellipsometric parameters of coherent (direct) light transmitted through a PDLC film to the order parameters that characterize the morphological and structural properties of the film. Elliptic and circular polarizations and the rotation of the plane of polarization of a wave transmitted through a film are investigated under the normal illumination of the PDLC film by a linearly polarized plane wave. The order parameters of the PDLC film are determined as a function of a control field under the transition from a partially ordered structure of optical axes of LC droplets to a homeotropic structure.  相似文献   

4.
Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30?J/cm2.  相似文献   

5.
Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.  相似文献   

6.
The evolution of Δm = 2 ground state coherences was investigated in a thermal Rb atomic beam using spatially separated laser beams. The coherence was created by optical pumping with a linearly polarized light beam and was probed, after evolving in a homogeneous magnetic field via the rotation of the plane of polarization of a second light beam. The observed signal shows dispersively shaped Ramsey fringes with a fringe width of 6 kHz.  相似文献   

7.
The interaction of linearly polarized light with photonic crystals based on bulk and thin-film synthetic opals is studied. Experimental transmission spectra and spectra showing the polarization state of light transmitted through opals are discussed. A change in polarization is found for waves experiencing Bragg diffraction from systems of crystallographic planes of the opal lattice. It is shown that the polarization plane of the incident linearly polarized wave at the exit from photonic crystals can be considerably rotated. In addition, incident linearly polarized light can be transformed to elliptically polarized light with the turned major axis of the polarization ellipse. Analysis of polarization states of transmitted light by using the transfer-matrix theory and homogenization theory revealed good agreement between calculated and experimental spectra.  相似文献   

8.
The optical activity of crystals leads to the occurrence of ellipticity at the reflection of light which is linearly polarized in the interface plane or normally to it. The effect experimentally discovered in the investigated structures with quantum wells is due to a spin-orbit interaction and birefringence. The qualitative dependence of the effect on the change in the orientation of the linear polarization of the incident light has been revealed. A sharp increase in the degree of the polarization conversion in a narrow range of incidence angles for light polarized in the incidence plane has been detected. The latter is due to the influence of the interference of the reflected wave on the structure thickness.  相似文献   

9.
Upon scattering of laser radiation at different wavelengths, three optical effects—rotation of the plane of polarization of linearly polarized light, dependence of the specific rotation on the radiation wavelength, and the dependence of the scattered light intensity on the angle between the scattered and incident beams—are simultaneously observed. The intensity distributions of the scattered laser light at 0.488, 0.531 nm, and 0.633 μm along the optical axis of a thick sample of a TeO2 single crystal are visualized. Based on the patterns obtained, the values of the specific rotation are calculated, and the curve of the optical rotation for the visible range is obtained.  相似文献   

10.
 研究了同心分区偏振偏转相位板对径向偏振光梯度力的调制效应。给出了相位板各部分偏振偏转角不同时,光学梯度力的分布情况。模拟结果表明:随着同心分区相位板各部分的半径和偏振旋转角的改变,光学梯度力方向及大小明显变化,且会产生许多可控的梯度力分布模式,可应用于微粒的收集、分离和合并。结果显示同心分区相位板对径向偏振光的调制可以用来生成可调光镊。  相似文献   

11.
Lv Y  Wang Z  Jin Y  Cao M  Han L  Zhang P  Li H  Gao H  Li F 《Optics letters》2012,37(5):984-986
A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons are oppositely polarized in two regions along the direction perpendicular to incident plane. Spatial scale of this polarization is related to optical properties of dielectric and can be controlled by experimental configuration. We believe that this study benefits the manipulation of spins of photons and the development of methods for investigating optical properties of materials.  相似文献   

12.
Linearly polarized luminescence spectra of bare (unburied) semiconductor structures with ZnCdSe/ZnSe quantum wires, obtained by reactive ion etching, were investigated. It was found that, regardless of the orientation of the linear polarization of the exciting light, the luminescence radiation of the quantum wires is polarized parallel to the axis of the wires, while the radiation of the buffer layer of the isotropic ZnSe barrier material is oriented perpendicular to the axis of the wires. The polarization features found are due to the modification of the modes of the electromagnetic field near open quantum wires, which occurs as a result of the presence of the vertical interfaces between media with strongly different permittivities. It was also found that, when linearly polarized excitation is used, the alignment of exciton dipole moments strongly influences the polarization properties of the luminescence. Fiz. Tverd. Tela (St. Petersburg) 40, 1559–1562 (August 1998)  相似文献   

13.
The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. The problem is solved by a modification of Ambartsumian’s layer addition method. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. Besides, in contrast to the single CLC layer case, these systems have multiple photonic band gaps. There are two types of such gaps: those selective with respect to polarization of the incident light and nonselective ones. It is shown that the system eigenpolarizations mainly coincide with the quasi-orthogonal, quasi-circular polarizations for normally incident light, except the regions of diffraction reflection selective with respect to the polarization of incident light. The influence of the CLC sublayer thick-nesses, the incidence angle, the local dielectric (magnetic) anisotropy of the CLC layers, and the refractive indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.  相似文献   

14.
程峰  蒋小军  韩景珊  林锦达  王育竹 《中国物理 B》2013,22(1):13201-013201
We demonstrated a new method of atom detection by means of magnetic optical effect. The number density of the atom cloud was measured by detecting the rotation angle of the polarization plane of linearly polarized probe light when propagating inside the atomic cloud. Detuning, magnetic field, and light intensity dependencies of the rotation angle were studied theoretically and experimentally to find the best parameter for atom detection. In this way, we managed to achieve a rotation angle of 0.22 rad with a signal to noise ratio (SNR) of 75 and a contrast of 87.5%.  相似文献   

15.
We demonstrated a new method of atom detection by means of the magnetic optical effect. The number density of the atom cloud was measured by detecting the rotation angle of the polarization plane of linearly polarized probe light when propagating inside the atomic cloud. Detuning, the magnetic field and light intensity dependencies of the rotation angle were studied theoretically and experimentally to find the best parameter for atom detection. In this way, we managed to achieve a rotation angle of 0.22 rad with a signal to noise ratio (SNR) of 75 and a contrast of 87.5%.  相似文献   

16.
Probe-beam scattering spectra have been obtained for four-wave mixing of laser waves in the skin layer of intrinsic semiconductors. The spectra were recorded using the frequency dispersion of orthogonally polarized radiation, which arises as a result of nonlinear optical interaction with conduction-band electrons. The mixing of two counterpropagating light waves in a semiconductor, implemented under nonlinear excitation of longitudinal density oscillations in the plasma electron subsystem of the semiconductor, is theoretically considered. This mixing is shown to lead to the rotation of the probe-beam polarization vector. The results obtained are of interest, e.g., for studying optical metamaterials based on thin-film structures.  相似文献   

17.
Jinsong Li  Xiumin Gao  Chenxia Li 《Optik》2011,122(4):333-336
The generalized cylindrical vector beam is just a linear combination of radial and azimuthal polarization. For radially polarized light in the focal plane, there are two electric field components, the radial component and z-component whose magnitude increase with the increase of numerical aperture. By contrast, for azimuthally polarized light in the focal plane, there is only one electrical field component in the azimuthal polarization, it is easy to understand the difference between the two polarization effects. In this paper, we demonstrate how this phenomenon can be harnessed to make a properly selected polarization component to achieve high focal depth in high numerical aperture systems. Numerical simulations show that the evolution of the focal shape is very considerable by changing polarization rotation angle of the generalized cylindrical vector beam. And some interesting focal spots and focal split may occur. And if the ratio of radial and azimuthal polarization is set properly by changing the polarization rotation angle, a largest focal depth is achieved. The tunable range of the focal depth is very considerable. The ratio of radial and azimuthal polarization is different in different NA optical system for obtaining the largest focal depth. We will denote a technique of polarization-assisted high focal depth in high numerical aperture systems.  相似文献   

18.
在磁光玻璃裸光纤偏振特性研究的基础上,研制磁光玻璃光纤,偏振特性及其在全光纤电流传感器中的应用。将采用模管法拉制成的磁光玻璃光纤置于亥姆霍兹线圈产生的磁场中,当线偏振光通过该光纤时,其偏振面旋转一定角度,把该角度转换成光信号的强度,然后再用仪器进行检测。通过对线偏振光偏振面在磁场中的偏振特性的测试与实验,提出用磁光玻璃光纤构成的全光纤电流传感器,可用于电流和磁场测试。  相似文献   

19.
The method of polarization visualization of a multiply scattering medium containing macroinhomogeneities based on analysis of polarization spatial distribution of a scattered linearly polarized light is discussed. The treatment is based on statistical properties of the effective optical path distribution of scattered field components. The influence of media scattering properties and the geometry of the experiment on the inhomogeneity image contrast obtained with use of polarization degree and of normalized scattered intensity of radiation as visualization parameters are discussed, as well as spatial resolution achieved in these both cases. Using the results of theoretical analysis and of the experimental model, the relationship between the shapes of spatial distributions of polarization degree and the intensity of the scattered light is considered as a function of the position of the visualized object (an absorbing half-plane immersed in a plane layer of the scattering medium). The opportunities for enhancing the quality of the images formed in this way are also discussed.  相似文献   

20.
A static optical model is developed for the effect of field-induced transient scattering on coherent light transmission through ferroelectric liquid crystals. Scattering processes are described by introducing an optically anisotropic medium containing scatterers (transient domains). The results presented in the paper are obtained for a plane parallel layer of ferroelectric liquid crystals with a planar helicoidal structure under normal illumination with a linearly polarized plane wave. An analysis is presented of the coherent transmittance of the layer in static applied electric fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号