首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
There is an emission peak at 494 nm in the electroluminescence (EL) of PVK [poly(n-vinylcarbazole)]: Eu(o-BBA)3(phen) besides PVK exciton emission and Eu3+ characteristic emissions. Both the peaking at 494 nm emission and PVK emission influenced the color purity of red emission from Eu(o-BBA)3(phen). In order to restrain these emissions and obtain high intensity red emission, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) were co-doped in PVK solution and used as the active emission layer. The EL intensity of co-doped devices reached to 420 cd/m2 at 20 V driving voltage. The chromaticity coordinates of EL was invariable (x = 0.55, y = 0.36) with the increase of driving voltage. For further improvement of EL intensity, organic–inorganic hybrid devices (ITO/active emission layer/ZnS/Al) were fabricated. The EL intensity was increased by a factor of 2.5 [(420 cd/m2)/(168 cd/m2)] when the Eu complex was doped with an efficient dye DCJTB, and by a factor of ≈4 [(650 cd/m2)/(168 cd/m2)] when in addition ZnS layer was deposited on such an emitting layer prior to evaporation of the Al cathode.  相似文献   

2.
《Organic Electronics》2008,9(5):890-894
LaCuOSe:Mg is a wide-gap p-type semiconductor with a high conductivity and a large work function. Potential of LaCuOSe:Mg as a transparent hole-injection electrode of organic light-emitting diodes (OLEDs) was examined by employing N,N′-diphenyl-N,N′-bis (1,1′-biphenyl)-4,4′-diamine (NPB) for a hole transport layer. Photoemission spectroscopy revealed that an oxygen plasma treated surface of LaCuOSe:Mg formed a hole-injection barrier as low as 0.3 eV, which is approximately a half of a conventional ITO/NPB interface. Hole-only devices composed of a LaCuOSe:Mg/NPB/Al structure showed a low threshold voltage ∼0.2 V and high-density current drivability of 250 mA cm−2 at 2 V, which is larger by two orders of magnitude than that of ITO/NPB/Al devices. These results demonstrate that LaCuOSe:Mg has great potential as an efficient transparent anode for OLEDs and other organic electronic devices.  相似文献   

3.
We report efficient blue electrophosphorescent polymer light emitting devices with polyfluorene (PFO) as the host and iridium bis[2-(4,6-difluorophenyl)-pyridinato-N,C2] picolinate (FIrpic) as the dopant. Despite the low-lying triplet energy level of the polyfluorene polymer host, phosphorescent quenching can be suppressed by using poly(N-vinylcarbazole) (PVK) as anode buffer layer, resulting in a high luminous efficiency of 26.4 cd A?1, which is one of the best results in the literature based on conjugated polymer reported to date. The reduced phosphorescent quenching is found to be associated with the exciton formation and charge carrier recombination within the PVK layer and the PVK/PFO interface due to the accumulation of holes. As compared with the devices based on non-conjugated host polymer PVK, the devices based on PFO showed a lower turn-on voltage (3.6 V vs. 4.4 V) and higher power efficiency (17 lm W?1 vs. 8.3 lm W?1) due to the higher mobility of PFO. When doubly doped with a newly synthesized yellow-emitting metallophosphor, white polymer light-emitting devices with superior device performance (a peak device efficiency of 40.9 cd A?1, a CIE coordinates of (0.32, 0.48), and a power efficiency of 31.4 lm W?1) was achieved. These findings can broaden our selection in polymer hosts for highly efficient phosphorescent blue emitting devices and can find potential applications in full color displays and solid-state lighting applications in the future.  相似文献   

4.
We report on the specific contact resistance of interfaces between thin amorphous semiconductor Indium Tin Zinc Oxide (ITZO) channel layers and different source/drain (S/D) electrodes (Al, ITO, and Ni) in amorphous oxide thin film transistors (TFTs) at different channel lengths using a transmission line model. All the contacts showed linear current–voltage characteristics. The effects of different channel lengths (200–800 μm, step 200 μm) and the contact resistance on the performance of TFT devices are discussed in this work. The Al/ITZO TFT samples with the channel length of 200 μm showed metallic behavior with a linear drain current-gate voltage (IDVG) curve due to the formation of a conducting channel layer. The specific contact resistance (ρC) at the source or drain contact decreases as the gate voltage is increased from 0 to 10 V. The devices fabricated with Ni S/D electrodes show the best TFT characteristics such as highest field effect mobility (16.09 cm2/V·s), ON/OFF current ratio (3.27×106), lowest sub-threshold slope (0.10 V/dec) and specific contact resistance (8.62 Ω·cm2 at VG=0 V). This is found that the interfacial reaction between Al and a-ITZO semiconducting layer lead to the negative shift of threshold voltage. There is a trend that the specific contact resistance decreases with increasing the work function of S/D electrode. This result can be partially ascribed to better band alignment in the Ni/ITZO interface due to the work function of Ni (5.04–5.35 eV) and ITZO (5.00–6.10 eV) being somewhat similar.  相似文献   

5.
Nonvolatile organic memory devices were fabricated utilizing a graphene oxide (GO) layer embedded between two polystyrene (PS) layers. Scanning electron microscope images of GO sheets sandwiched between two PS layers showed that the GO sheets were clearly embedded in the PS layers. Capacitance–voltage (CV) curves of the Al/PS/GO/PS/n-type Si devices clearly showed hysteresis behaviors with multilevel characteristics. The window margin of the nonvolatile memory devices increased from 1 to 7 V with increasing applied sweep voltages from 6 to 32 V. The cycling retention of the ON/OFF switching for the devices was measured by applying voltages between +15 and −15 V. While the capacitance of the memory devices at an ON state have retained as 230 pF up to 104 cycles, that at an OFF state maintained as 16 pF during three times of repeated measurements. The extrapolation of the retention data for the devices maintained up to 106 cycles. The operating mechanisms of the nonvolatile organic memory devices with a floating gate were described by the CV results and the energy band diagrams.  相似文献   

6.
The main goal of the paper was investigation of influence of aluminum electrode preparation via thermal evaporation (TE) and the magnetron sputtering (MS) on power conversion efficiency (PCE) of polymeric solar cells. The photovoltaic properties of such three kinds devices based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as ITO/P3HT/Al, ITO/P3HT:PCBM (1:1, w/w)/Al and ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al were investigated. For the constructed devices impedance spectroscopy were analyzed. For devices lack of PEDOT:PSS layer or lack of PCBM, photovoltaic parameters were very low and similar to the parameters obtained for device with Al electrode prepared by magnetron sputtering. The devices comprising PEDOT:PSS with P3HT:PCBM showed the best photovoltaic parameters such as a VOC of 0.60 V, JSC of 4.61 mA/cm2, FF of 0.21, and PCE of 5.7 × 10?1%.  相似文献   

7.
《Organic Electronics》2014,15(6):1254-1262
We reported on the influence of zinc oxide nanoparticles (ZnO NPs) on the electrical bistable behavior of nonvolatile write-once-read-many-times (WORM) memory devices based on an indium-tin oxide/polyvinylpyrrolidone (PVP):ZnO NPs/aluminum (ITO/PVP:ZnO/Al) structure. The maximum ON/OFF current ratio of the nonvolatile WORM memory devices was approximately 3 × 103 and the devices remained in the ON state even after the applied voltage was turned off. In addition, reliability studies for response time and once write/continuous read operations of the optimal ZnO NPs concentration are presented. The response times of both rise-time and fall-time were about 3 and 6 μs respectively. The conduction mechanisms of all voltage regions of the device were analyzed by theoretical models and electron trapping in the ZnO NPs of the electron tunneling among a PVP matrix was discussed.  相似文献   

8.
Bright and efficient violet quantum dot (QD) based light-emitting diodes (QD-LEDs) with heavy-metal-free ZnSe/ZnS have been demonstrated by choosing different hole transport layers, including poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB), and poly-N-vinylcarbazole (PVK). Violet QD-LEDs with maximum luminance of about 930 cd/m2, the maximum current efficiency of 0.18 cd/A, and the peak EQE of 1.02% when poly-TPD was used as HTL. Higher brightness and low turn-on voltage (3.8 V) violet QD-LEDs could be fabricated when TFB was used as hole transport material. Although the maximum luminance could reach up to 2691 cd/m2, the devices exhibited only low current efficiency (∼0.51 cd/A) and EQE (∼2.88%). If PVK is used as hole transport material, highly efficient violet QD-LEDs can be fabricated with lower maximum luminance and higher turn-on voltages compared with counterpart using TFB. Therefore, TFB and PVK mixture in a certain proportion has been used as HTL, turn-on voltage, brightness, and efficiency all have been improved greatly. The QD-LEDs is fabricated with 7.39% of EQE and 2856 cd/m2 of maximum brightness with narrow FWHM less than 21 nm. These results represent significant improvements in the performance of heavy-metal-free violet QD-LEDs in terms of efficiency, brightness, and color purity.  相似文献   

9.
《Solid-state electronics》2006,50(9-10):1501-1505
The optoelectronic characteristics of poly(2-methoxy-5-(2′ethyl-hexoxy)-1,4-phenylene-vinylene) (MEH-PPV) polymer LEDs (PLEDs) have been improved by employing thin doped composition-graded (CG) hydrogenated amorphous silicon–carbide (a-SiC:H) films as carrier injection layers and O2-plasma treatment on indium–tin-oxide (ITO) transparent electrode, as compared with previously reported ones having doped constant-optical-gap a-SiC:H carrier injection layers. For PLEDs with an n-type a-SiC:H electron injection layer (EIL) only, the electroluminescence (EL) threshold voltage and brightness were improved from 7.3 V, 3162 cd/m2 to 6.3 V, 5829 cd/m2 (at a current density J = 0.6 A/cm2), respectively, by using the CG technique. The enhancement of EL performance of the CG technique was due to the increased electron injection efficiency resulting from a smoother barrier and reduced recombination of charge carriers at the EIL and MEH-PPV interface. Also, surface modification of the ITO transparent electrode by O2-plasma treatment was used to further improve the EL threshold voltage and brightness of this PLED to 5.1 V, 6250 cd/m2 (at J = 0.6 A/cm2). Furthermore, by employing the CG n[p]-a-SiC:H film as EIL [hole injection layer (HIL)] and O2-plasma treatment on the ITO electrode, the brightness of PLEDs could be enhanced to 9350 cd/m2 (at a J = 0.3 A/cm2), as compared with the 6450 cd/m2 obtained from a previously reported PLED with a constant-optical-gap n-a-SiCGe:H EIL and p-a-Si:H HIL.  相似文献   

10.
Nonvolatile memory devices based on a poly(4-vinylphenol) (PVP) layer containing Cu2ZnSnS4 (CZTS) nanoparticles were fabricated by using a simple spin-coating method. An energy dispersive spectrum revealed that the CZTS nanoparticles were Cu poor and Zn rich. Transmission electron microscopy images showed that the CZTS nanoparticles were randomly distributed in the PVP layer. Capacitance–voltage (CV) curves for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices at 1 MHz showed a hysteresis with flat-band voltage (Vfb) shifts, which resulted from the existence of CZTS nanoparticles acting as trap sites in the memory devices. The magnitudes of the Vfb corresponding to the memory window shifts between 1.0 and 2.5 V, as determined from the CV data at 1 MHz, were dependent on the voltages applied to the memory device, indicative of multilevel characteristics for the memory effect. The operating mechanisms of the writing and the erasing processes for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices are described on the basis of the CV results and the energy-band diagrams.  相似文献   

11.
By using air-stable alumminum as cathode,molecular doped polymer (MDP)blue light emitting diodes(LEDs)were constructed.Poly(N-vinylcarbazole(PVK)doped with,1,1,4,4-tetrapheny 1-1,3-butadiens(TPB)was used as the light-emitting layer,a layer of 2-(4-biphenylyl)-5-(4-terbutypheny)1-3,4-oxadiazole(PBD) as hole-blocking,electron-transporting layer and a layer of tris(8-quinolinolate)-Aluminum(Alq3)film also worked as an electron-transporting layer.The device with structure of ITO/PVK;TPB/PBD/Alq3/Al was fabricated.Blue emis-sion began at about 4V,more than 1000 cd/m^2 was achieved at 14V.This is the lowest turn-on voltage for polymeric lgiht-emitting diodes(PLEDS)used air-stable elec-trodes.Such low-operating voltage,especially using air-stable aluminum as cathode,may be helpful for the devices to be used in commercially viable displays.  相似文献   

12.
Polymer memory devices using Au nanoparticles (Au NPs) incorporated poly(N-vinylcarbazole) (PVK) as the active layer and Al films as the electrodes are investigated. The Al/PVK:Au NPs/Al devices exhibit electrical bistability in the IV characteristics and show a conductance difference ratio between the high-resistance state (HRS) and low-resistance state (LRS) by a factor of 105. Furthermore, the Au nanoparticle/PVK hybrid memory device can be programmed and exhibits excellent thermal stability up to 154 °C in ambient atmosphere. The current conduction is dominated by Schottky emission at HRS and exhibits Ohmic behavior at LRS. The dependence of the current conduction on temperature reveals the connection between the conduction character and the energy-band offsets at the metal (Al or Au)–PVK junctions. In addition, the resistive switching is correlated with the width of depletion region in PVK, which varies with the change of hole carrier concentration upon applying electrical field.  相似文献   

13.
Organic-based devices with an 8 × 8 array structure using titanium dioxide nanoparticles (TiO2 NPs) embedded in poly(9-vinylcarbazole) (PVK) film exhibited bistable resistance states and a unipolar nonvolatile memory effect. TiO2 NPs were a key factor for realizing the bistability and the concentration of TiO2 NPs influenced ON/OFF ratio. From electrical measurements, switching mechanism of PVK:TiO2 NPs devices was closely associated with filamentary conduction model and it was found that the OFF state was dominated by thermally activated transport while the ON state followed tunneling transport. PVK:TiO2 NPs memory devices in 8 × 8 array structure showed a uniform cell-to-cell switching, stable switching endurance, and a high retention time longer than 104 s.  相似文献   

14.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

15.
MolecularDopedPolymerLightEmitingDiodeswithAir-stableAluminumasCathode①②CHENBaijun,HOUJingying.XUEShanhua,LIUShiyong(StateKey...  相似文献   

16.
《Organic Electronics》2007,8(4):349-356
The new amorphous molecular material, 2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole, that functions as good hole blocker as well as electron transporting layer in the phosphorescent devices. The obtained material forms homogeneous and stable amorphous film. The new synthesized showed the reversible cathodic reduction for hole blocking material and the low reduction potential for electron transporting material in organic electroluminescent (EL) devices. The fabricated devices exhibited high performance with high current efficiency and power efficiency of 45 cd/A and 17.7 lm/W in 10 mA/cm2, which is superior to the result of the device using BAlq (current efficiency: 31.5 cd/A and power efficiency: 13.5 lm/W in 10 mA/cm2) as well-known hole blocker. The ITO/DNTPD/α-NPD/6% Ir(ppy)3 doped CBP/2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole as both hole blocking and electron transporting layer/Al device showed efficiency of 45 cd/A and maximum brightness of 3000 cd/m2 in 10 mA/cm2.  相似文献   

17.
A thin nickel (Ni) layer of thickness 5 nm was inserted in between the indium tin oxide (ITO) layers of thickness 50 nm each so as to increase the conductivity of ITO without affecting much of its transmittance nature. ITO layers with and without Ni film were prepared by reactive DC sputtering on both Si and glass substrates. The influence of Ni layer on the optical and electrical properties of prepared devices was investigated. Due to the insertion of thin Ni layer, the resistivity of ITO/Ni/ITO sample (3.2×10−4 Ω cm) was reduced 10 times lesser than that of ordinary ITO layer (38.6×10−4 Ω cm); consequently it increased the mobility of ITO/Ni/ITO device. The external and internal quantum efficiencies (EQE and IQE) of ITO/Ni/ITO device exhibited better performance when compared to ITO layer that has no Ni film. At wavelengths of 350 and 600 nm, the photoresponses of ITO/Ni/ITO device were predominant than that of reference ITO device. This highly conductive and photoresponsive Ni inserting ITO layers would be a promising device for various photoelectric applications.  相似文献   

18.
《Organic Electronics》2014,15(8):1791-1798
An organic Write-Once-Read-Many (WORM) device based on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as the active layer was fabricated with an inverted architecture. Insertion of an ultrathin layer of poly(methylmethacrylate) (PMMA) between the bottom electrode and the PEDOT:PSS resulted in a systematic and substantial decrease in turn-on voltage, from 7.0 V to less than 1.0 V. An optimal thickness of the PMMA layer was found to yield the lowest consistent turn-on voltage of ∼0.8 V, with 0.5 V being the lowest value of all fabricated devices. The switching mechanism was attributed to filamentary doping of the PEDOT:PSS. Insertion of the PMMA acted to protect the underlying ZnO from being etched by the acidic PEDOT:PSS as well as to improve its wetting properties. Devices were demonstrated on both ITO and aluminum bottom electrodes, with aluminum yielding the highest ON/OFF ratios in the study. Owing to their inverted architecture, the devices demonstrated good stability, and the retention time of the ON-state was determined to be greater than twenty months while stored in air for devices with ITO bottom electrodes. In addition to deposition via spin-coating, blade-coating was demonstrated as a viable processing technique for applications requiring rapid or large-area manufacturing.  相似文献   

19.
Control of the threshold voltage and the subthreshold swing is critical for low voltage transistor operation. In this contribution, organic field-effect transistors (OFETs) operating at 1 V using ultra-thin (∼4 nm), self-assembled monolayer (SAM) modified aluminium oxide layers as the gate dielectric are demonstrated. A solution-processed donor–acceptor semiconducting polymer poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) (PDPP2TTT) is used as the active layer. It is shown that the threshold voltage of the fabricated transistors can be simply tuned by carefully controlling the composition of the applied SAM. The optimised OFETs display threshold voltages around 0 V, low subthreshold slopes (150 ± 5 mV/dec), operate with negligible hysteresis and show average saturated field-effect mobilities in excess of 0.1 cm2/V s at 1 V.  相似文献   

20.
陈佰军  黄劲松 《半导体光电》1997,18(2):110-112,129
报道了用有机/聚合物薄膜材料制备的双异质结发光二极管。器件结构为:玻璃衬底/ITO/PVK/AlqPBD/Alq3/Al电极。在这种结构器件中,电子和空穴分别从Al负电极和ITO正电极中注入,产在PBD及PVK中传输注入到Alq3发光层中。器件在正向偏压为4V时有绿色光输出;在正向偏压为10V,最大亮度可达3000cd/m^2以上。经光谱测试,电致发光峰值波长为523nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号