首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
熔盐电解法制备Al-Sr合金中反电动势和电流效率的研究   总被引:1,自引:0,他引:1  
研究了在SrCl2-SrF2-BaF2的电解质体系中熔盐电解法制备高浓度Al-Sr合金,采用连续脉冲-计算机法测定电解过程的反电动势并且对反电动势和电流效率的影响因素进行了详细的研究。结果发现:增加阴极电流密度,反电动势随之增加;升高极距,反电动势亦有所增加。延长电解时间,反电动势逐渐升高而电流效率达到73.2%后逐渐下降。加大电流强度,延长电解时间,减少铝基母合金质量,可制得高浓度的Al-Sr合金,合金中锶的质量分数最高可达34.8%。实验表明,只要控制好各项工艺参数,可以生产锶的质量分数在20%以内的任意浓度Al-Sr合金。  相似文献   

2.
以氧化镁为原料,在MgF2-LiF-KCl电解质体系中采用熔盐电解制备铝镁合金,考查电解时间、电流强度对电流效率以及合金中镁含量的影响,并采用连续脉冲—计算机法测量电解过程反电动势的变化。结果表明,电流效率随电流密度和电解时间的增加先增大后减小;镁含量随电流强度的增加先增大后减小,随电解时间逐渐增大。在3A的电流强度下电解2h的电流效率达87%,加料前后平均反电动势降低0.5V,氧化镁(1%)的加料周期约45min。铝镁合金中镁浓度分布比较均匀,无明显偏析现象。  相似文献   

3.
以MgO为电解原料,在Na_3PO_3-MgF_2体系中采用旋转铝液阴极法制备铝镁中间合金。采用熔盐电解监控仪和Teslameter测量电解过程中的反电动势、电流强度及磁场强度等工艺参数,并利用SEM及XRD技术分析了合金产物的微观结构,探讨了旋转铝液阴极合金化过程中反电动势、电流效率及合金中镁浓度的变化规律。结果表明,旋转铝液阴极化过程可有效降低反电动势,并提高电流效率及合金中镁的质量浓度。在950℃、电流5 A、外加40 mT磁场的条件下,电解3 h可制取镁含量24.5%的铝镁合金,电流效率可达83%。所得合金样品组织致密,各元素在合金中的分布较均匀,合金物相主要为Al_(12)Mg_(17)。  相似文献   

4.
以SrCl2为原料,在70%SrCl2-29%KCl-1%SrF2体系中电解生产Al-Sr合金。考察了电解温度、电流密度和电解时间等条件对电流效率和合金锶含量的影响。通过控制工艺条件,可以生产锶含量在0~10%的Al-Sr合金,其物相主要为Al与Al4Sr。  相似文献   

5.
以Er_2O_3为铒源,在750℃,熔盐KF(25%)-LiF(20%)-ErF_3(10%)-KCl(45%)体系中,下沉铝为阴极,研究铝铒中间合金的反电动势。结果表明:在16A/dm~2的条件下,反电动势随着时间增加出现先增大后稳定不变,加入2%Er_2O_3,反电动势平均下降0.19V,测得加料周期为6min。随着电流密度增加,电流效率、铝铒中间合金中铒的浓度均呈现先增大后减小趋势。在电解时间为24min、12A/dm2时电流效率达到最大值74.64%,合金中铒的浓度达到最大值3.65%。合金成分主要为Al3Er,少部分为Al12Er,且分布较为均匀。  相似文献   

6.
研究了在CaCl2-CaF2纯钙盐体系中下沉式铝液槽结构熔盐电解法生产Al-Ca合金新工艺,采用连续脉冲-示波器法测定电解过程的反电动势,研究了在实验室条件下电解温度、电流密度、电解时问和极距对熔盐电解法制取铝钙合金的反电动势的影响.用熔盐电解法并采用铝阴极生产Al-Ca合金比对掺法更加节省电能,降低了Al-Ca合金的生产成本,是一种有经济价值的生产方法,有很好的发展前景.  相似文献   

7.
以氧化钪为原料、液态铝作阴极,在CaCl2-LiF(80%CaCl2-0%LiF)体系中通过熔盐电解制备了铝钪(Al-Sc)合金.实验考查了在800℃的温度条件下,电解时间、反电动势和槽电压的影响.结果表明,氯化钙-氟化锂体系的熔盐电解制备可制备出钪质量分数为2%~6%的铝钪合金.采用XRD、SEM和电子能谱分析等方法对合金样品进行了表征.结果表明,合金中连续相为铝基,间断相为ScAl3.  相似文献   

8.
本文采用了熔盐电解法研究铝钪合金的制备,主要考察了以MF-ScF3-ScCl3为电解质体系,以ScCl3为原料,制取铝钪合金的工艺条件,包括电流密度、电解时间以及电解温度等对反电动势、合金钪含量和电流效率的影响.研究结果表明,以MF-ScF3-ScCl3为电解质体系,以ScCl3为原料的熔盐电解法制备铝钪合金的钪的含量最高可达3.85%,电流效率达到73%.  相似文献   

9.
利用500A规模电解槽,在氟化锂-氟化镨钕-氟化铈熔盐体系中,以氧化铈与氧化镨钕混合物为电解原料,制备了不同金属配分的镨钕铈合金。研究了不同电解质组成、电解温度(980~1 060℃)以及加料速度对电解过程的影响。研究表明,电解质组成是控制合金中金属配分的关键因素,同时电解温度对金属配分的影响不大。但电解温度偏低或者加料速度偏慢会使电解质液面上升,导致"熔盐外溢"现象的发生。  相似文献   

10.
熔盐电解法制备Al-Sc应用合金的工艺研究   总被引:2,自引:1,他引:1  
研究了熔盐电解法生产Al-Sc合金的工艺参数对合金中Sc含量的影响.结果表明.合金中Sc的含量随电解温度的升高呈先升后降的趋势,最佳电解温度为960℃;随冰晶石分子比的增大,Sc含量逐渐下降;采用工业电流密度(J=1 A·cm-2)电解90 min,合金中的Sc含量高达0.8%左右;为保证电解过程稳定并降低能耗,电流强度应为2-4 A,极距应为3 cm.  相似文献   

11.
以Y2O3为电解原料,以金属镍棒为自耗阴极、石墨板为阳极,在常规的石墨电解槽中采用氟化物体系熔盐电解法制备了YNi合金.研究了电解时间、电解温度、电解质组成、阴极电流密度等主要技术参数对电解过程的影响,并对所制备的钇镍合金进行了表征.结果表明,熔盐电解制备钇镍合金的较优工艺条件为:电解温度1000℃,电解质YF3与Li...  相似文献   

12.
从铝电解行业使用的原辅材料、正常生产控制和延长电解槽寿命等方面进行了阐述,提出了铝电解行业节能减排的一些措施。  相似文献   

13.
采用GdF3-LiF-BaF2为电解质熔体,Gd2O3、ZrO2及MgO混合氧化物为原料共电沉积Gd-Zr-Mg中间合金,考察了电解温度、阴极电流密度及混合氧化物原料中ZrO2的含量对电解电流效率及所得中间合金中Zr含量的影响.研究表明:电流效率随温度和电流密度增大均先增后减,随混合氧化物原料中ZrO2含量增大则减小;电解得Gd-Zr-Mg合金中Zr含量随电解温度和混合氧化物原料ZrO2含量的增加而增加,随阴极电流密度的增加则是先增后减,电流效率可达57%,Zr含量能达到10%~11%.  相似文献   

14.
随着重稀土元素对铝、镁、铜、镍及钢铁等金属材料的功能化作用被广泛关注,使得作为战略性资源的重稀土元素在金属合金材料的应用领域拓展空间巨大.在此背景下,作为改性元素的重稀土金属及合金的市场需求必然猛增.由于重稀土单质自身的高熔点,混熔法、真空热还原法一直是生产制备重稀土金属及合金的主要方法,寻求一条低成本、高效、绿色的制备方法则至关重要.由于熔盐电化学还原法在生产低熔点轻稀土及合金工艺方面具有经济、高效等优势,近年来,通过熔盐电解方式直接制取低熔点的重稀土合金成为国内外学者研究的热点,从目前取得进展来看,具有广阔的发展前景.针对国内外重稀土金属及合金的熔盐电解法制取的研究现状进行了评述,从体系物理化学性质、电极过程机理、模拟计算等几个方面做了简要的总结和分析,以期对重稀土合金材料的制备研究提供有益的帮助.   相似文献   

15.
钕电解相关物质理论分解电压的计算   总被引:4,自引:0,他引:4  
刘奎仁  陈建设  魏绪钧 《稀土》2001,22(2):30-33
本文计算了NdF3-LiF-Nd2O3体系各物质的理论分解电压。结果表明,采用惰性阳极,理论分解电压按Nd2O3、NdF3、LiF顺序依次增大,温度升高,理论分解电压降低;采用活性阳极(石墨)时,Nd2O3与石墨反应生成CO和CO2,其理论分解电压较小,反应较易发生,尤以生成CO的反应更易发生。但当电流密度较高或Nd2O3浓度较低时,可能生成碳氧氟化合物及氟碳化合物,并发生阳极效应,各物质的理论分解电压也随温度的升高而降低。  相似文献   

16.
电解二氧化锰作为电池工业中非常重要的原料之一,其生产过程简单分为化合(制液)、净化(除杂)、电解、后处理(再加工)4个部分。在电解工序当中,锰在此工段以二氧化锰的形式电沉积在阳极板上并在剥离后送至后处理进一步加工。而电解作为整个电解二氧化锰的核心工序,其过程工艺对最终产品质量有很大的影响。主要介绍了电解工艺原理、电解生产时的参数控制以及简单作业流程。  相似文献   

17.
以平均粒径约为30 μm,空心球壁厚约1.8 μm的空心球结构WC-6Co复合粉为原料,利用放电等离子烧结(SPS)技术制得不同烧结温度、保温时间、烧结压力工艺下的WC-6Co硬质合金.采用扫描电镜、钴磁仪等检测手段对合金的组织与性能进行表征分析.结果表明:随着烧结温度的升高,合金的致密度和硬度升高;在实验范围内合金密度与硬度随着保温时间的延长而增加,再趋于稳定;烧结压力对合金密度、硬度等性能影响不大.综合考虑合金性能,较好烧结工艺为:温度1 250 ℃、保温时间5 min、烧结压力50 MPa.该烧结工艺制得的合金的密度达14.69 g/cm3、断裂韧性达12.23 MPa·m1/2,其组织也很细很均匀.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号