首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, Ce-doped zirconolite was synthesized through high-temperature solid-state reaction at 1250 ℃ in air for 96 h. The crystal phase.microstructure and valence transition were studied by X-ray diffraction(XRD), scanning electron microscopy(SEM), and X-ray photoelectron spectroscopy(XPS).Phase relations of CaZr_(1-x)Ce_xTi_2O_7 systems were determined by XRD analyses and Rietveld refinements.Four different phases are identified, namely zirconolite, perovskite, pyrochlore, and cerianite. The phase transformation(2M-zirconolite → 4M-zirconolite → Ce-pyrochlore) is caused by cations rearrangement as cerium content increases. The solubility limit of cerium ions in CaZr_(1-x)Ce_xTi_2O_7 system is estimated to be approximately 0.80. Under sintering air atmosphere, partial reduction of Ce~(4+) in Ce~(3+) is detected in Ce 3d XPS spectra, and the ratio of Ce~(3+) and Ce~(4+) significantly decreases as cerium content increases.  相似文献   

2.
A series of Ce1–xTixO2 mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal (M = Pt, Rh, Ru) was used for soot oxidation. Ti-doped Ce1–xTixO2 catalysts (x is the molar ratio of Ti/(Ti + Ce) and ranges from 0.1 to 0.5) exhibit much better oxidation performance than CeO2 catalyst, and the Ce0.9Ti0.1O2 catalyst calcined at 500 °C has the best catalysis activity. Each noble metal (1 wt%) was supported on Ce0.9Ti0.1O2 (M/C9T1) and the properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, Brunauer–Emmett–Teller (BET) method, and H2-temperature programmed reduction (H2-TPR) results. Results show that the introduction of Ti into CeO2 forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface. The noble metal is highly dispersed over Ce0.9Ti0.1O2, and M/C9T1 catalysts present enhanced activity in comparison to Ce0.9Ti0.1O2. It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst. A small amount of Ti doping in CeO2 can significantly improve the activity of the catalyst, while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst, which hinders the contact and reaction between the catalyst and the soot.  相似文献   

3.
The Mn-doped CeO 2 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach.Firstly,the alloy Ce 37 Mn 18 C 45 was prepared in vacuum induction melting furnace.Subsequently,Mn-doped CeO 2 nanopowders with 142 m 2 /g of specific surface area were obtained through a simple hydrolyzed-oxidized procedure of the alloy.Those nanopowders were heat treated at different temperatures.The obtained materials were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM) and energy dispersive spectroscopy(EDS).And the catalytic activity on vinyl chloride(VC) emission combustion was investigated.The results showed that those nanopowders after hydrolyzed-oxidized from Ce 37 Mn 18 C 45 mainly consisted of CeO 2 and Mn 3 O 4.Manganese element increased the thermal stability of CeO 2 nanopowders.The Mn-doped CeO 2 nanopowders had three morphologies.Small particles were Mn-doped CeO 2,square particles were Mn 3 O 4 and the rods were Mn 3 O 4 and Mn 2 O 3.The Mn-doped CeO 2 nanopowders had good vinyl chloride(VC) emission catalytic performance.  相似文献   

4.
In this work, a highly active CeO2 catalyst with hollow nanosphere morphology for low temperature NOx storage was prepared by a surfactant-assisted solvothermal reaction. The physicochemical properties of ceria samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption, H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS). The as-prepared CeO2 nanosphere possesses excellent NO oxidation capacity, smaller mesopores, better reducibility and more surface Ce3+ content. Compared with CeO2 with nanorod and nanoparticle morphologies, CeO2 nanosphere shows better intrinsic low temperature NOx trapping performance, with a wide operating temperature window (150–300 °C), high NOx adsorption capacity (NAC, 640–745 μmol/g) and high NOx storage capacity (NSC, 250–350 μmol/g). Two reaction pathways are speculated for NOx adsorption on CeO2 nanosphere, including “nitrate route” and “nitrite route”. The thermally unstable surface nitrites formed on the CeO2 nanosphere allow ceria to release more NOx during the desorption process. The present work provides a new ceria morphology for NOx traps, which may become a potential excellent NOx storage material.  相似文献   

5.
The precursors organic cerium deposits were obtained by a stripping precipitation method from cerium-loaded P507 organic phase using oxalic acid as a precipitating agent and nano-sized ceria particles were prepared by calcining the precursors at 500 °C. The morpholo-gies, phase structure of the precursors and ceria particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG-DSC) and infrared spectroscopy analysis (FTIR). The results indicated that the concentration of oxalic acid had a little impact on the morphology of the precursors, which was blocky-shape Ce2(C2O4)3·10H2O with a monoclinic lattice structure. With the volume ratio of organic phase and oxalic acid aqueous solution (aqueous phase) varied from 1:3 to 1:6, the morphologies of the precursors Ce2(C2O4)3·10H2O precipitates gradually changed from inhomogeneous blocky-shape to uniform spherical particles. The precursors could be turned to CeO2 crystal particles with a fluorite structure by calcining, and the products ceria particles were similar in the size and morphology to the precursors.  相似文献   

6.
K4Ce2Nb10O30 ultrafine powders were prepared by stearic acid method (SAM). The obtained products were analyzed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy and UV-visible absorp-tion spectra. XRD patterns revealed that K4Ce2Nb10O30 powders treated at 900 ℃ for 2 h presented tetragonal structure without the presence of deleterious phases. Furthermore, the K4Ce2Nb10O30 prepared by SAM had considerable activity under visible fight irradiation.  相似文献   

7.
Sr3-z(Alx,Si1-x)O -5-xFx:zCe3+ phosphors were synthesized by high-temperature solid-state reaction.The structure and luminescence properties of phosphors with various Al/Si ratios and Ce3+ concentrations were characterized using various methods such as X-ray diffraction,photoluminescence excitation and photoluminescence spectra.XRD result displayed that a complete solid solution between Sr3AlO4F and Sr3SiO5 was formed.With the increasing of x value,a broader excitation band and stronger absorption appeared in the blue light region.Moreover,the emission band shifted to a shorter wavelength and the emission intensity reached a maximum at x=0.6.By adjusting the concentration of Ce3+,a widely tunable range of emission wavelength under the excitation of 460 nm was obtained from the green to yellow regions.In addition,the concentration and thermal quenching were also discussed.  相似文献   

8.
In this research, un-doped CeO2 and Ce0.85La0.10M0.05O2 (M: Sm, Er, Y) compounds were synthesized by hydrothermal method and the multi-functional properties are reported. Oxygen defects were created with the additives of rare earth ions. The electrical and luminescence behaviors of the synthesized compounds were investigated in accord with the types of additives. The synthesized products were characterized by X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) measurement, UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopic (EIS). All synthesized compounds are found to be nano-structured and have cubic phase. The total conductivity of all samples was calculated. Hence, the total conductivity of un-doped CeO2, Ce0.85La0.10Y0.05O2, Ce0.85La0.10Er0.05O2 and Ce0.85La0.10Sm0.05O2 is found to be 2.07 × 10?10, 5.70 × 10?4, 1.0 × 10?3 and 0.0747 S/cm, respectively. Also, bandgap energy (Eg) of these samples calculated from UV visible absorption spectra is discussed, and the optical results show variation between 3.2 and 2.15 eV. Additionally, the luminescence properties of the compounds were investigated and different emissions occur depending on the additive type. Accordingly, photoluminescent emission spectra of Ce0.85La0.10Y0.05O2, Ce0.85La0.10Er0.05O2 and Ce0.85La0.10Sm0.05O2 phosphors indicate that these phosphors have red, green and orange-red colors, respectively.  相似文献   

9.
This article showed that the catalytic activity of MnOx/γ-Al2O3/Ce0.5Zr0.5O2 monolithic catalyst toward the catalytic combustion of ethanol in a fixed bed reactor could be greatly improved by doping three metal oxides into Ce0.5Zr0.5O2. The catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45M0.1 Ox (M = Y, La, Mn) is better than that of MnOx/γ-Al2O3/Ce0.5 Zr0.5O2. The order of activity of the catalysts is as follows: MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1Ox 〉 MnOc/γ-Al2O3/Ce0.45 Zr0.45La0.1Ox 〉 MnOx/γT-Al2O3/Ce0.45Zr0.45Mn0.1Ox 〉 MnOx/y-Al2O3/Ce0.5Zr0.5O2. The influence of the loading amount of manganese oxide in enhancing the catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1 Ox was investigated. The results showed that when MnO2 loading amount was 10% (mass fraction), the MnOx/Al2O3/Ce0.45Zr0.45Y0.1Ox catalyst recorded the highest activity.  相似文献   

10.
We documented(ⅰ) the decolorization of wastewater in visible light,which contains methyl orange,crystal violet and indigo carmine dyes,using La0.7Sr0.3Mn1-xFexO3(x=0.0,0.05,0.1 and 0.5) manganites and(ⅱ) efficient separation of photocatalysts from water using magnetic field.These ceramic photocatalysts were sintered at 1050℃ for 12 h.Ceramics were characterized by X-ray diffraction(XRD),soft X-ray absorption spectroscopy(SXAS),Fourier transf...  相似文献   

11.
Structural, optical and magnetic properties are reported for new synthesized perovskite materials. Ba0.3La0.7Ti0.3Fe0.7O3 and Ba0.1La0.9Ti0.1Fe0.9O3 compositions were prepared via solid state reaction. X-ray analysis confirms that both compositions show feature of perovskite structure. Rietveld refinement method was used to confirm the phase formation and investigate the structure and space group. The study demonstrates the formation of orthorhombic structure with Pnma space group for Ba0.3La0.7Ti0.3Fe0.7O3 while the composition Ba0.1La0.9Ti0.1Fe0.9O3 structure adopts Pbnm symmetry. UV–vis spectroscopy measurements show very broad and intense UV–visible light absorption, the estimated band gap ranges between 2.07 and 2.15 eV. Magnetic measurements were carried out for the compositions Ba0.3La0.7Ti0.3Fe0.7O3 and Ba0.1La0.9Ti0.1Fe0.9O3. The hysteresis loops of both samples at 300 and 10 K show a strong ferromagnetic behavior. The temperature dependent magnetization at 0.05 T under field-cooled (FC) and zero field cooled (ZFC) modes shows magnetic frustration or spin glass-like behavior.  相似文献   

12.
Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) (EGDC) powders were successfully synthesized with a fast and facile cellulose-templating method for the first time and characterized by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The samples were calcined at a relatively low calcination temperature of 773 K (500 °C). The sintering behavior of the calcined EGDC powders was also investigated at 1673 K (1400 °C) for 6 hours. Calcined Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) powders and sintered Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) pellets crystallized in the cubic fluorite structure. It was found that the relative densities of the sintered EGDC pellets were over 95 pct for all the Er contents studied. Moreover, the effect of Er content on the ionic conductivity of the gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.90) was investigated. The highest ionic conductivity value was found to be 3.57 × 10?2 S cm?1 at 1073 K (800 °C) for the sintered Ce0.82Gd0.1Er0.08O1.91 at 1673 K (1400 °C) for 6 hours.  相似文献   

13.
Colour Centres and Energy Transfer in BaF2-xClx:Eu^2+ Phosphors   总被引:1,自引:0,他引:1  
The optical absorption spectra of BaF2-x Clx :Eu^2+ after ultraviolet (UV) light excitation were investigated. The differences between the absorption spectra after and before excitation (DAS) were observed. The DAS increase at both the high and the low energy side of F band in BaF2-xClx : Eu^2 + after 245 nm UV light excitation. The bleach effect of UV light and the absorption of electrons in the valence band may account for the former and the formation of Fa centres (association of F(Cl^-) centres), whose absorption band matches the HeNe laser better, may explain the latter. In the write-in process, the transfer of electrons is via tunneling, In the readout process, the transfer of electrons captured in F(F^-) and Fa centres is more likely via tunneling, and that of F(Cl^- ) centres is more likely via conduction band.  相似文献   

14.
SiO2 glasses co-doped with Al3+ ions were prepared by a sol-gel method by holding 0.5% of Ce3+ ions constant and varying the Al3+ ions concentrations. Thermal stability, the structural, chemical and the optical properties of the samples were studied by using differential scanning calorimetric (DSC), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), UV-vis spectroscopy and photoluminescence spectroscopy (PL). The DSC and TGA of samples depicted that the presence of dopant and co-dopant decreased the endothermic peak temperature and the yield respectively. SEM images showed that the particles were in the nano-range and spherical in shape. The XRD showed that all the samples were amorphous. The UV absorption measurements indicated that the presence of Al3+ ions significantly reduced the SiO2 absorption band, increased the absorbance intensity of SiO2 and decreased the transmittance as compared to the presence of the Ce3+ ions alone. The photoluminescence results displayed an optimum increase in luminescence intensity when the ratio of Al: Ce was 10:1 and further increase in aluminum content quenched the luminous intensity.  相似文献   

15.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

16.
Yttrium and cerium co-doped ZnO nanoparticles were synthesized by combustion route and characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET),energy dispersive spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS),UV-visible diffuse reflectance spectroscopy(UV-vis DRS),photoluminescence(PL)and electrochemical impedance spectroscopy(EIS)techniques.The introduction of yttrium ions has efficiently increased the relative percentage of Ce3+ions in ZnO.Yttrium and cerium co-doped ZnO shows efficient photo activity for hydrogen evolution(10.61 mmol/((g·h))higher than previously reported optimal value for rare earth codoped ZnO photocatalysts.This remarkably increased hydrogen evolution can be ascribed to the synergy between electronic anchoring effect of Y3+/Y2+and Ce4+/Ce3+redox couples.This report presents new idea for the synthesis of efficient photocatalyst using economical route and ion anchoring effect.The hydrogen evolution was also tested using Na2S and Na2SO3as electron donors under visible light illumination.The synthesized photocatalysts also exhibit high stability.  相似文献   

17.
A novel series of Ce~(3+)-doped Yb_3 Al_(5-x)Ga_xO_(12)(x = 0, 1,2, 3,4, 5) powders of ytterbium aluminum gallium garnets were synthesized by high temperature solid-state reaction in a carbon reducing atmosphere. The ytterbium aluminum garnets were characterized by X-ray powder diffraction, UV-Vis diffuse reflectance spectra, photoluminescence spectra and decay curves. Moreover, the substitution effect for the Al~(3+) sites with Ga~(3+) in 0.5 at%Ce:Yb_3 Al_(5-x)Ga_xO_(12)(x = 0,1, 2, 3, 4, 5) garnets were discussed. With the increase of Ga~(3+) ion concentration, the visible absorption peaks within 400-450 nm have blue shift phenomenon,while the absorption peaks in the range of 330-350 nm and the absorption band edge red shifts.Furthermore, the short decay times are very short with less than 10 ns due to the Yb~(3+) + Ce~(3+)→ Yb~(2+) + Ce~(4+) electron transfer reaction.  相似文献   

18.
Long-lasting phosphor Y2O2S: Eu3+, Mg2+, Ti4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eux3+ (0.01 ≤ x ≤ 0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu3+ crystal structure, Eu3+ ions only replaced Y3+ ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D17F2 transition) to 626 nm (5D07F2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eux3+ (0.01 ≤ x ≤ 0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg2+ or Ti4+ ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg2+ and Ti4+ ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd · m−2). Thus the LLP mechanism was analyzed.  相似文献   

19.
Persistent luminescence (PersL) materials are widely used in safety indication, traffic and transportation signs, architectural decoration and other fields. In this paper, (Y1?xCex)3(Al0.9995Cr0.0005)2Ga3O12 (x = 0.001, 0.002, 0.003, 0.005) transparent ceramics were successfully prepared by solid-state reaction method in air followed by HIP post-treatment. With the increase of Ce3+ doping concentration, the optical quality of the as-prepared ceramics is improved and the morphology is denser. Luminescent quenching occurs when the Ce3+ concentration is more than 0.2%. The as-prepared transparent ceramics were annealed in different atmospheres. From the PersL decay curves, the transparent ceramics after air annealing show the best PersL performance: luminance with 4424.0 mcd/m2 and PersL duration over 865 min after ceasing 365 nm excitation, respectively. The effects of Ce3+ doping concentration and annealing atmospheres are also discussed in detail.  相似文献   

20.
The present work aimed to investigate the electrochemical properties of ITO substrates in propylene carbonate (PC) with 0.5 mol/L lithium perchlorate (LiClO4) medium in the presence of elaborated thin films of cerium dioxide pure and doped with manganese at varying percentages. Ce1–xMnxO2 (x = 0 wt%, 2 wt%, 4 wt% and 6 wt%) were successfully deposited by the spray pyrolysis (SP) technique on the glass substrate and ITO at 450 °C. The effects of manganese (Mn) doped thin films Ce1–xMnxO2 were studied and investigated by using different analyses namely X-ray diffraction (XRD) analysis, Raman spectroscopy method, UV–Vis spectrophotometer technique, atomic force microscopy (AFM) analysis and electrochemical properties. XRD data obtained present a polycrystalline with a face-centred cubic structure of fluorite type. Raman results of undoped and Mn doped thin films show two peaks at 465 and 600 cm?1, due to the formation of extrinsic oxygen vacancies by the incorporation of Mn into Ce1–xMnxO2 matrix. Energy dispersive spectroscopy (EDS) data show the presence of Ce, O, and Mn elements in the elaborated films. The AFM results reveal that the surface roughness decreases with increasing Mn rate. Further, band gap energy of thin films decreases with increasing in Mn rate due to the formation of defect state between valence and conduction band. The storage capacity of the elaborated Ce1–xMnxO2/ITO/PC + LiClO4 electrode reaches a maximum of 1.997 mF in the presence of 6 wt% of Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号