首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用高温高压模拟腐蚀试验、动电位扫描技术和X射线光电子能谱仪(XPS)等手段研究了镍基合金G3在高含H2S和CO2腐蚀环境中的腐蚀行为。结果表明,在高温高压(90℃,32 MPa,pH2S为3.4 MPa,体积分数10.49%,pCO2为3.3MPa,体积分数为10.41%)的模拟气田采出液中,镍基合金G3发生了明显腐蚀,腐蚀产物由片状晶粒构成;在含50%H2S气田采出水中加入CO2促进了合金的腐蚀,当CO2的体积分数进一步提高到50%,合金点蚀敏感性下降;在50%H2S和50%CO2环境中,Cl-提高了合金点蚀敏感性,同时高浓度Cl-破坏了合金钝化膜自修复能力,G3在该腐蚀环境中形成的钝化膜由Cr2S3,Cr2O3,FeS,Fe2O3,Ni(OH)2和MoO3等组成。随着使用环境条件的恶化,合金钝化膜遭到破坏,腐蚀加速。  相似文献   

2.
运用腐蚀失重和电化学测量技术,研究了镍基合金718在模拟苛刻油田环境中的H2S/CO2腐蚀行为。结果表明,在模拟高温高压H2S/CO2腐蚀环境中,718合金腐蚀轻微,表现出良好的抗均匀腐蚀和局部腐蚀能力。电化学测试结果表明,在模拟CO2腐蚀环境中,718合金的阳极极化曲线存在明显的钝化区,而在模拟H2S/CO2腐蚀条件下的阳极极化曲线呈现多次活化-钝化转变现象,表明腐蚀产物膜的稳定性降低;EIS表明阻抗谱均有明显的容抗弧特征,不含H2S时材料显示单一的容抗弧,加入H2S时低频显示扩散阻抗控制,饱和CO2溶液中718合金具有相对较大的极化电阻。  相似文献   

3.
NT80SS钢在高含H2S/CO2环境中的腐蚀行为   总被引:1,自引:0,他引:1  
模拟罗家寨气田高含H2S/CO2腐蚀环境,研究NT80SS套管钢的腐蚀规律及环境因素(总压、温度、腐蚀时间、Cl-、流速)对其腐蚀的影响;并采用动电位扫描、电化学交流阻抗谱(EIS)和扫描电镜(ESM)等手段分析了腐蚀产物膜的电化学特性和形貌.结果表明,在所研究的温度范围内,NT80SS钢在60℃腐蚀速率最低;当总压≥9MPa时,在120℃下的腐蚀速率比90℃的小,而总压<9MPa时,情况则相反;腐蚀速率随时间的延长而降低;Cl-能促进钢的腐蚀;介质流速增加,钢的腐蚀速率增大.电化学实验结果指出,在30℃~120℃的温度范围内,60℃时钢腐蚀产物膜的阻抗能力强、阳极极化率高,腐蚀产物膜的致密性最好,因而NTSOSS钢在60℃时腐蚀速率最低.  相似文献   

4.
高温高压H2S/CO2G3镍基合金表面的XPS分析   总被引:5,自引:0,他引:5  
采用XPS研究镍基合金UNS N06985(即 G3)在高压H2S/CO2环境腐蚀前后钝化膜的结构与组成.研究两种环境条件对G3钝化膜的影响,第一种环境为H2S分压3 MPa、CO2分压2 MPa、实验温度为130℃;第二种环境为H2S分压3.5 MPa、CO2分压3.5 MPa、实验温度为205℃.测试结果表明:腐蚀前和第一种环境条件下获得的钝化膜具有双层结构,钝化膜表层主要为氢氧化物,内层主要是Cr2O3和组成合金的各种金属组成;在第二种环境条件下获得的钝化膜可分为3层,外层主要是硫化物,过渡层含有较多的氧氧化物和金属硫化物,内层主要是氧化物和金属单质.随着环境条件的苛刻,镍基合金钝化膜的保护作用降低,腐蚀破坏程度加重.  相似文献   

5.
本研究中利用电化学显微镜(SECM)、扫描电子显微镜(SEM)和电化学阻抗谱(EIS)研究了镍基合金G3在室温(25℃)和高温(90℃)、含H2S、CO2,Cl-介质环境中各种硫状态下的腐蚀行为。结果表明,随温度升高,腐蚀变得更加严重,镍基合金G3表面出现轻微的点蚀;阳极极化曲线在室温下具有钝化区,而在90℃的温度下出现活性溶解区,钝化现象消失。物相分析表明在镍基合金G3上形成钝化膜主要由Ni、Cr及Fe的氧化物组成,由于S2-侵入薄膜导致钝化膜溶解,腐蚀产物由NiS、FeS2组成。G3合金在含硫环境中的耐腐蚀性减弱,相比较沉积硫、析出硫,硫悬浮状态下镍基合金G3表面钝化膜最致密,腐蚀最轻微。研究表明硫是强催化剂,其存在导致严重的局部腐蚀,元素硫的状态是影响腐蚀产物膜的致密性和生长速率的关键因素,也是影响合金腐蚀速率的关键因素。  相似文献   

6.
镍基合金管材高温高压H2S/CO2环境中局部腐蚀研究   总被引:1,自引:0,他引:1  
冷加工强化的耐蚀合金管材成功用于酸性天然气气田已有多年的历史,但是,局部活化的点蚀坑以及蚀坑中的应力集中是冷加工强化的耐蚀合金应力腐蚀开裂的重要机制。在高温高压釜中模拟了镍基合金028在高温高压H2S/CO2环境下的腐蚀行为。结果发现,镍基合金028在高温高压H2S/CO2环境中的均匀腐蚀很轻微,但试样表面有点蚀现象发生,有析出物的试样点蚀更为显著。XPS结果显示,腐蚀后,硫元素只在镍基合金表面钝化膜的表层富集,钝化膜以氢氧化物及氧化物为主,对基体有保护作用。对点蚀坑截面的EDS分析结果表明,硫元素在点蚀坑内部富集,从而导致点蚀坑内局部酸化,加速点蚀坑的扩大。  相似文献   

7.
采用扫描电镜(SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)等对028镍基合金的腐蚀产物膜进行了分析,采用电化学测试研究了028镍基合金在模拟油田地层水介质中的腐蚀行为和耐蚀机理。结果表明:028镍基合金在超高温高压含CO_2的地层水环境中的腐蚀比较轻微,试样表面未见明显的局部腐蚀迹象。腐蚀后试样表面钝化膜主要是Fe和Ni的氧化物、Cr的氢氧化物和氧化物构成,产物膜的双极性自修复能力有效地阻碍了阴阳离子穿透腐蚀产物膜到达金属表面,降低膜与金属界面处的离子浓度,减缓了腐蚀进程。随温度升高,CO_2分压增大,028镍基合金的腐蚀电位降低和自腐蚀电流密度升高,腐蚀驱动力增强,钝化膜的保护作用减弱,极化电阻减小,腐蚀速率增大。  相似文献   

8.
应用电化学极化法和溶液浸泡法对两种耐蚀合金(G3和Incoloy 825)在50℃氯化铁溶液中的点蚀敏感性进行了研究;采用高温高压釜研究了在含H2S/CO2气体介质中材料的高温腐蚀性能以及试验温度的影响。利用能谱分析仪(EDS)、扫描电镜(SEM)等分析了腐蚀后试样表面的微观形貌及组成。结果表明,Incoloy 825合金极化曲线中阳极曲线部分很平缓,无钝化区出现,极化度较低,G3阳极区有钝化区,点蚀电位相对较高;G3耐点蚀性能优于Incoloy825,其点蚀临界温度高于50℃;随着温度升高,两种材料的腐蚀程度加剧,其中Incoloy 825在高温下出现点蚀现象。  相似文献   

9.
不锈钢及镍基合金在高温水中的腐蚀研究   总被引:8,自引:0,他引:8  
王保峰 《腐蚀与防护》2001,22(5):187-190
为了开发超临界水氧化技术和超临界水电力技术,研究了五种不锈钢和一种镍基合金在192、292和392℃高温高压水中的耐腐蚀性。结果表明:在试验条件下,所有的合金都表现出某种程度的不稳定性,均匀腐蚀轻微,点蚀是主要的腐蚀形式。相比较而言,高合金不锈钢Sanicro28和镍基合金Ni825在该环境中表现出较好的耐蚀性。  相似文献   

10.
不锈钢和镍基合金在高温高压醋酸溶液中的腐蚀行为   总被引:1,自引:0,他引:1  
采用特制高压釜设备,研究304L不锈钢、316L不锈钢、317L不锈钢和镍基合金(Incoloy 800)在高温高压醋酸溶液中的腐蚀,初步探讨了不锈钢和镍基合金在醋酸溶液中的腐蚀机理及Ni和Mo元素对提高不锈钢耐蚀性能的影响.结果表明,温度对不锈钢和镍基合金耐蚀性有显著影响,随着温度的升高,腐蚀速率逐渐增大,当温度升高到一定值,不锈钢的耐蚀性会急剧下降.在低温醋酸溶液中,Ni对于提高不锈钢耐蚀性是有益的;在高温醋酸溶液中,Ni对于提高不锈钢耐蚀性没有显著影响.在低温醋酸溶液中,Mo对于提高不锈钢耐蚀性没有显著影响;在高温醋酸溶液中,Mo对于提高不锈钢耐蚀性是有益的.  相似文献   

11.
目的研究P110S低合金钢在H2S/CO2环境中的腐蚀行为及腐蚀产物对其影响机理。方法通过P110S低合金钢在不同温度下的腐蚀失重实验、微观SEM形貌观察、XRD分析和离子选择性实验,探究腐蚀产物的晶体结构以及离子选择性对腐蚀行为的影响。腐蚀实验环境为模拟我国西北某油田现场不同井深的腐蚀工况,其中CO2与H2S的分压比为2.5。结果温度低于100℃时,腐蚀产物主要为马基诺矿型FeS,其为阳离子选择性,能够阻碍阴离子与基体接触,起到抑制腐蚀的作用,因此腐蚀速率较低,约为0.15 mm/a,且随温度升高基本保持不变,试样表面的腐蚀产物膜平整未脱落;温度达到120℃后,腐蚀速率急剧增大,部分腐蚀产物由马基诺矿转变为磁黄铁矿,腐蚀产物膜因下层腐蚀产物挤压而发生破裂脱落,试样发生局部腐蚀;温度高于160℃时,腐蚀产物全部为磁黄铁矿型FeS,其为阴离子选择性,无法阻碍阴离子穿过腐蚀产物膜与基体接触,因此随着温度的升高,腐蚀速率逐渐增大并趋于平缓,达到3.6 mm/a。结论H2S/CO2环境中低合金钢腐蚀行为与腐蚀产物晶体构型及离子选择性密切相关,若腐蚀产物为马基诺矿型FeS时,其具有阳离子选择性,能够抑制金属基体腐蚀溶解;而若腐蚀产物为磁黄铁矿型FeS时,因其具有阴离子选择性,则不能抑制金属基体发生腐蚀溶解。  相似文献   

12.
在模拟油田CO2/H2S共存的腐蚀环境中,研究了温度、CO2分压、H2S分压对N80、P110两种油管钢动态腐蚀行为的影响。结果表明,在实验参数范围内,随着温度、CO2分压、H2S分压的变化,两种材质的动态腐蚀速率都呈现了先增大后减小的变化趋势,且P110钢的腐蚀速率大于N80钢的腐蚀速率。  相似文献   

13.
CO2/H2S对油气管材的腐蚀规律   总被引:3,自引:0,他引:3  
本文综述了CO2、H2S对油气管材的腐蚀机理及影响因素,提出了开发经济型油管的设想.  相似文献   

14.
目的 为给新疆油田输气管道的腐蚀防控提供依据,揭示L360NS钢在CO2/H2S/O2共存体系中不同O2含量(物质的量分数0%~2%)和不同温度(60~180℃)工况下的腐蚀行为。方法 以新疆油田HN区块输气管道为研究背景,基于现场运行工况设计高温高压反应釜试验方案,选择L360NS钢为试样进行失重法、腐蚀产物表征、基体形貌表征、腐蚀缺陷深度测试等试验。结果 随O2含量增大,L360NS钢的均匀腐蚀速率从0.299 1 mm/a逐渐增大到0.912 3 mm/a。试样表面出现腐蚀缺陷,且随O2含量升高有逐渐扩大的趋势,腐蚀产物膜呈楔形、多方晶体状,大小不一。温度(60~180℃)升高,L360NS钢的均匀腐蚀速率从2.103 4 mm/a逐渐降低到0.457 0 mm/a,腐蚀缺陷逐渐减小,产物膜结构由稀松多孔逐渐转为致密。结论 由于O2具有强氧化性及去极化效应,导致在产物中出现Fe的高价氧化物,结构疏松多孔。另一方面,H2...  相似文献   

15.
目的探究不同状态310S奥氏体不锈钢在H2S/CO2环境中的应力腐蚀行为。方法研究三种不同状态310S奥氏体不锈钢在湿H2S环境中的应力腐蚀行为和电化学测试,并探究影响310S应力腐蚀开裂的因素及其机理。结果经过冷变形处理后,310S奥氏体不锈钢的抗应力腐蚀性能有所提升,而900℃时效处理会使310S钢材更易遭受应力腐蚀的影响。此外,施加载荷会使材料的耐蚀性变差。在SSRT实验中,固溶处理后的试样应力腐蚀敏感性为88.1%,时效处理后则升高至91.5%,冷轧后则降低至85.3%。另外还观察到,裂纹通常起源于试样表面局部腐蚀处。通过准原位充氢-TEM实验发现,氢原子扩散进基体后,会促进位错运动,导致位错更易发生塞积,从而引发应力集中。结论冷轧态310S具有最好的耐蚀性能,其次为固溶态,时效态310S的耐蚀性能最低。在湿H2S环境下,冷轧态310S的应力腐蚀敏感性最低,时效处理则会提高试样的应力腐蚀敏感性。H原子进入到310S内部会促进位错的运动、增殖与塞积,导致应力集中,从而降低局部的耐蚀性能。  相似文献   

16.
目的:研究 CO2分压对 CO2/H2S腐蚀的影响规律,为海底管道材料的选择提供参考依据。方法采用高温高压反应釜进行腐蚀模拟实验,对腐蚀前后的试样进行称量,计算腐蚀速率。通过SEM观察腐蚀产物膜形貌,通过 XRD 分析腐蚀产物膜成分。结果当 CO2/H2S 分压比较高(1200)时, CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为1.87、3.22、5.35 mm/a,随着CO2分压升高,腐蚀速率几乎呈线性增大趋势。当CO2/H2S分压比较低(200)时,CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为3.47、3.64、3.71 mm/a,CO2分压变化对腐蚀速率的影响并不显著。当CO2/H2S分压比较高(1200)时,腐蚀产物以FeCO3为主,腐蚀受CO2控制;此时低CO2分压下的腐蚀产物膜较完整致密,高CO2分压下的腐蚀产物膜局部容易破裂,对基体保护性下降,因此腐蚀速率随CO2分压升高而增大。当CO2/H2S分压比较低(200)时,腐蚀产物以FeS为主,腐蚀受H2S控制;此时在不同CO2分压条件下,腐蚀产物均较完整致密,因此腐蚀速率相对较低,并未随着CO2分压升高显著增大。结论 CO2分压对CO2/H2S腐蚀速率的影响与CO2/H2S分压比密切相关,海底管道材料选择不仅要考虑CO2分压的影响,还要考虑CO2/H2S分压比的影响。  相似文献   

17.
李冬梅  龙武  邹宁 《表面技术》2016,45(7):102-108
目的研究高温条件下抗硫低合金钢P110SS在低H2S、高CO_2环境中的腐蚀行为。方法模拟我国西部酸性油田工况环境,利用高温高压设备,通过失重法测试腐蚀速率,并用SEM、EDS和XRD分析腐蚀产物。结果在8 MPa的纯CO_2环境中,腐蚀速率随温度升高而降低,210℃时为0.35 mm/a,腐蚀产物为碳酸盐。当加入6 k Pa硫化氢时,腐蚀速率依然随温度升高而降低,150℃时为0.74 mm/a,腐蚀产物呈现双层结构,内层为结晶良好的FeCO_3,外层为FeS。当硫化氢分压升至165 k Pa时,腐蚀加剧,且腐蚀速率随温度升高而增大,210℃时达2.78 mm/a,腐蚀产物主要为铁的硫化物,同时随腐蚀时间延长至2160 h,腐蚀速率有所降低。结论在纯CO2环境中,高温时生成的内层碳酸盐腐蚀产物膜相对完整,对基体的保护能力较强。当加入6 k Pa硫化氢时,腐蚀由CO_2主导,呈现与纯CO_2环境中相同的腐蚀速率规律,内层的FeCO_3细密均匀。当硫化氢分压升至165 k Pa时,腐蚀由H_2S和CO_2混合控制,疏松破损的铁的硫化物无法对基体形成良好的保护,因此腐蚀速率显著升高。  相似文献   

18.
利用自制的高温高压釜,通过失重法、ESEM和EDS等分析技术研究了抗硫碳钢在高温高压CO2/H2S溶液中腐蚀产物膜特性及对腐蚀的影响.结果表明:抗硫碳钢在120℃不同介质条件下腐蚀产物膜的特性对材料的腐蚀有着决定性的作用,分别在CO2,H2S,CO2/H2S条件下,产物膜变得致密,晶柱变细,以无序状堆积,这种致密的腐蚀产物膜具有很好的保护性,降低了碳钢的腐蚀;当加入0.5%HAC时,腐蚀速率明显增大,从其表面膜的组成可以看出,Fe的硫化物含量有所减少,而表面膜中Cr、W的含量增加,使表面膜的骨架更加致密,但是,pH值的降低,加速了膜的溶解,在一定程度上使腐蚀速率比3%NaCl H2S 0.45MPaCO2增加;腐蚀产物膜结构、性质和组成对腐蚀速率有着重要的影响.  相似文献   

19.
对动态CO_2/H_2S腐蚀测试除氧操作进行了改进,建立了新的测试溶液预除氧装置和方法。采用测试溶液先外部预除氧,然后液体由真空负压吸入测试釜内,进一步除氧1h的操作流程,并通过平行试验验证。结果表明:该方案可确保腐蚀测试溶液除氧完全,保证了腐蚀试验的准确性与可重复性。  相似文献   

20.
目的:研究L80油管在CO2/H2S环境中的腐蚀行为。方法利用扫描电镜(SEM)、EDAX能谱分析L80油管内壁腐蚀产物形貌特征和化学组成,采用高温高压反应釜,以实际油水分离的水样为腐蚀介质进行模拟实验,研究原油含水率、CO2/H2S 分压和温度对 L80油管腐蚀速率的影响规律。结果在CO2/H2S环境中,L80油管内壁呈现明显的局部腐蚀特征,部分表面点蚀坑深度超过100μm,形成FeS、FeCO3等腐蚀产物。随着含水率的增加,L80油管腐蚀速率逐渐增大,含水率为30%时的腐蚀速率为0.0377 mm/a,含水率为100%时的腐蚀速率为0.0952 mm/a。CO2分压不变时,随着 H2S分压的增加,L80钢的腐蚀速率增大,H2S分压为0.04 MPa时的腐蚀速率为0.0377 mm/a,H2S分压为0.3 MPa时的腐蚀速率为0.0952 mm/a;H2S分压不变时,随着CO2分压的增大,L80钢腐蚀速率变化不明显且腐蚀速率较小。随着温度的升高,腐蚀速率先以较大幅度增大,再以较小幅度减小,从40℃增加至100℃时,腐蚀速率由0.0083 mm/a升至0.1264 mm/a,100℃左右时的腐蚀速率最大,120℃对应的腐蚀速率为0.106 mm/a。结论 L80油管在CO2/H2S环境中以均匀腐蚀和局部点蚀为主。L80油管腐蚀速率对H2S分压比CO2分压更敏感,CO2分压增大促使具有良好保护性的FeCO3保护膜的形成,降低了腐蚀速率。温度升高至一定范围,导致碳酸盐等难溶性盐溶解度降低,并覆盖在钢表面形成保护层,从而使腐蚀速率下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号