首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines impacts of regional factors affecting biomass and process input supply chains and ongoing technology development on the life cycle greenhouse gas (GHG) emissions of ethanol production from corn stover in the U.S. Corn stover supply results in GHG emissions from −6 gCO2eq./MJ ethanol (Macon County, Missouri) to 13 gCO2eq./MJ ethanol (Hardin County, Iowa), reflecting location-specific soil carbon and N2O emissions responses to stover removal. Biorefinery emissions based on the 2011 National Renewable Energy Laboratory (NREL) process model are the single greatest emissions source (18 gCO2eq./MJ ethanol) and are approximately double those assessed for the 2002 NREL design model, due primarily to the inclusion of GHG-intensive inputs (caustic, ammonia, glucose). Energy demands of on-site enzyme production included in the 2011 design contribute to reducing the electricity co-product and associated emissions credit, which is also dependent on the GHG-intensity of regional electricity supply. Life cycle emissions vary between 1.5 and 22 gCO2eq./MJ ethanol (2011 design) depending on production location (98%–77% reduction vs. gasoline). Using system expansion for co-product allocation, ethanol production in studied locations meet the Energy Independence and Security Act emissions requirements for cellulosic biofuels; however, regional factors and on-going technology developments significantly influence these results.  相似文献   

2.
Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm3 y−1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects.  相似文献   

3.
Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs.This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production.  相似文献   

4.
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO2e/GJethanol. This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO2e/GJethanol) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJethanol/GJfossil.  相似文献   

5.
Animal waste is an important source of anthropogenic GHG emissions, and in most cases, manure is managed by land application. Nevertheless, due to the huge amounts of manure produced annually, alternative manure management practices have been proposed, one of which is gasification, aimed to convert manure into clean energy-syngas. Syngas can be utilized to provide energy or power. At the same time, the byproduct of gasification, biochar, can be transported back to fields as a soil amendment. Environmental impacts are crucial in selecting the appropriate manure strategy. Therefore, GHG emissions during manure management systems (land application and gasification) were evaluated and compared by life cycle assessment (LCA) in our study. LCA is a universally accepted tool to determine GHG emissions associated with every stage of a system. Results showed that the net GHG emissions in land application scenario and gasification scenario were 119 and -643 kg CO2-eq for one tonne of dry feedlot manure, respectively. Moreover, sensitive factors in the gasification scenario were efficiency of the biomass integrated gasification combined cycle (BIGCC) system and energy source of avoided electricity generation. Overall, due to the environmental effects of syngas and biochar, gasification of feedlot manure is a much more promising technique as a way to reduce GHG emissions than is land application.  相似文献   

6.
Sri Lanka has a hydropower dominated power system with approximately two thirds of its generation capacity based on large hydro plants. The remaining one third are based on oil fired thermal generation with varying technologies, such as oil steam, Diesel, gas turbines and combined cycle plants. A significant portion of this capacity is in operation as independent power plants (IPPs). In addition to these, Sri Lanka presently has about 40 MWs of mini-hydro plants, which are distributed in the highlands and their surrounding districts, mainly connected to the primary distribution system. Further, there are a few attempts to build fuel wood fired power plants of small capacities and connect them to the grid in various parts of the country.

The study presented in this paper investigates the impact of these new developments in the power sector on the overall emissions and the greenhouse gas (GHG) emissions in particular. It examines the resulting changes to the emissions and costs in the event of developing the proposed coal power plant as an IPP under different investment and operational conditions. The paper also examines the impact on emissions with 80 MWs of distributed power in different capacities of wind, mini-hydro and wood fired power plants.

It is concluded that grid connected, distributed power generation (DPG) reduces emissions, with only a marginal increase in overall costs, due to the reduction in transmission and distribution network losses that result from the distributed nature of generation. These reductions can be enhanced by opting for renewable energy based DPGs, as the case presented in the paper, and coupling them with demand side management measures. It is also concluded that there is no impact on overall emissions by the base load IPPs unless they are allowed to change over to different fuel types and technologies.  相似文献   


7.
Agricultural residues (wheat/barley/oat straw) can be used to produce charcoal, which can then be either landfilled off-site or spread on the agricultural field as a means for sequestering carbon. One centralized and five portable charcoal production technologies were explored in this paper. The centralized system produced 747.95 kg-CO2eq/tonne-straw and sequestered 0.204 t-C/t-straw. The portable systems sequestered carbon at 0.141–0.217 t-C/t-straw. The net energy ratio (NER) of the portable systems was higher than the centralized one at 10.29–16.26 compared to 6.04. For the centralized system, the carbon sequestration and the cumulative energy demand were most sensitive to the charcoal yield. Converting straw residues into charcoal can reduce GHG emissions by 80% after approximately 8.5 years relative to the baseline of in-field decomposition, showing these systems are effective carbon sequestration methods.  相似文献   

8.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

9.
Residential Fuel Cell micro combined heat and power (FC-μCHP) systems can help decarburizing the energy system. In the European ene.field project, the environmental performance of FC-μCHP under different conditions was therefore evaluated by means of a comprehensive Life Cycle Assessment (LCA). Important influential factors were explored, i.e. heating demands, full load hours (FLHs) and electricity replacement mixes (ERMs). The systems were compared with a stand-alone Gas Condensing Boiler (GCB) and a heat pump (HP, only in single family homes, SFHs). For the initially assumed FLHs and the current ENTSO-E ERM, relevant environmental impacts including climate change are generally smaller for the FC-μCHPs than for the HP and the stand-alone GCB. In the setting “existing SFHs in central climate” with the highest deployment potential, GHG emission savings are higher the more carbon-intensive the ERM is and/or higher the net electricity export into the grid is. The results are discussed and put into perspective. Further research demands as well as product development opportunities are outlined. The importance of a green hydrogen economy is emphasized.  相似文献   

10.
Life cycle analysis is considered to be a valuable tool for decision making towards sustainability. Life cycle energy and environmental impact analysis for conventional transportation fuels and alternatives such as biofuels has become an active domain of research in recent years. The present study attempts to identify the most reliable results to date and possible ranges of life cycle fossil fuel use, petroleum use and greenhouse gas emissions for various road transportation fuels in China through a comprehensive review of recently published life cycle studies and review articles. Fuels reviewed include conventional gasoline, conventional diesel, liquefied petroleum gas, compressed natural gas, wheat-derived ethanol, corn-derived ethanol, cassava-derived ethanol, sugarcane-derived ethanol, rapeseed-derived biodiesel and soybean-derived biodiesel. Recommendations for future work are also discussed.  相似文献   

11.
In the USA, most corn stover currently remains in fields as crop residue that provides soil erosion control and maintains soil organic carbon levels. This stover is a potential biofuel feedstock for direct combustion, pyrolysis, and ethanol fermentation. At a research site in south central Wisconsin, the northern edge of the US Corn Belt, corn grain harvest averaged 9.8 Mg ha−1 DM over a 6-year period, 1997 to 2002. Removal of all stover could recover an additional 7.2 Mg ha−1 y−1 DM and, in the process, remove an additional 47, 6, 81 and 197 kg ha−1 y−1 of N, P, K and calcium carbonate equivalent, respectively. The fertilizer replacement cost for stover removal is 32 $ Mg−1 DM, which is 95% of the fertilizer value of the grain. However, most of the N, P, K and alkalinity of the stover is found in the leaves, stalk, and husks, not in the cob. At our study site, complete stover removal would export 235 $ ha−1 y−1 of fertilizer and limestone, mainly as K, while cob export would be worth 20 $ ha−1 y−1 in nutrient equivalents. Based on this research, removal of cobs only is equivalent to 16.6% of total stover removal but with a greatly reduced fertilizer replacement cost of 17 $ Mg−1 DM and the same energy density.  相似文献   

12.
The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m−3) at relatively low temperatures (90-100 °C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol−1, and 95.7 kJ mol−1 for xylose degradation, respectively.  相似文献   

13.
This paper evaluates GHG emissions and energy balances (i.e. net energy value (NEV), net renewable energy value (NREV) and net energy ratio (NER)) of jatropha biodiesel as an alternative fuel in Tanzania by using life cycle assessment (LCA) approach. The functional unit (FU) was defined as 1 tonne (t) of combusted jatropha biodiesel. The findings of the study prove wrong the notion that biofuels are carbon neutral, thus can mitigate climate change. A net GHG equivalent emission of about 848 kg t−1 was observed. The processes which account significantly to GHG emissions are the end use of biodiesel (about 82%) followed by farming of jatropha for about 13%. Sensitivity analysis indicates that replacing diesel with biodiesel in irrigation of jatropha farms decreases the net GHG emissions by 7.7% while avoiding irrigation may reduce net GHG emissions by 12%. About 22.0 GJ of energy is consumed to produce 1 t of biodiesel. Biodiesel conversion found to be a major energy consuming process (about 64.7%) followed by jatropha farming for about 30.4% of total energy. The NEV is 19.2 GJ t−1, indicating significant energy gain of jatropha biodiesel. The NREV is 23.1 GJ t−1 while NER is 2.3; the two values indicate that large amount of fossil energy is used to produce biodiesel. The results of the study are meant to inform stakeholders and policy makers in the bioenergy sector.  相似文献   

14.
Jurisdictions are looking into mixing hydrogen into the natural gas (NG) system to reduce greenhouse gas (GHG) emissions. Earlier studies have focused on well-to-wheel analysis of H2 fuel cell vehicles, using high-level estimates for transportation-based emissions. There is limited research on transportation emissions of hythane, a blend of H2 and NG used for combustion. An in-depth analysis of the pipeline transportation system was performed for hythane and includes sensitivity and uncertainty analyses. When hythane with 15% H2 is used, transportation GHG emissions (gCO2eq/GJ) increase by 8%, combustion GHG emissions (gCO2eq/GJ) decrease by 5%, and pipeline energy capacity (GJ/hr) decreases by 11% for 50–100 million m3/d pipelines. Well-to-combustion (WTC) emissions increase by 2.0% without CCS, stay the same with a 41% CCS rate, decrease by 2.8% for the 100% CCS scenario, and decrease by 3.6% in the optimal CO2-free scenario. While hythane contains 15% H2 by volume only 5% of the gas’ energy comes from H2, limiting its GHG benefit.  相似文献   

15.
The aim of this study is to investigate the potential use of natural gas for heat and power production for the municipality of Linköping, Norrköping and Finspång in the County of Östergötland, Sweden.  相似文献   

16.
One way of producing nearly CO2 free electricity is by using biomass as a combustible. In many cases, removal of CO2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.  相似文献   

17.
A streamlined life cycle assessment (LCA) is reported of a nuclear-based copper–chlorine (Cu–Cl) hydrogen production cycle, including estimates of fossil fuel energy use and greenhouse gas (GHG) emissions. Calculations revealed that the process requires 474 kJ of fossil fuel energy per MJ of hydrogen, which is less than for other hydrogen production processes. Moreover, GHG emissions are estimated to be 27 gCO2e per MJ of hydrogen, which is only slightly higher than the corresponding value for wind-based hydrogen production. A sensitivity analysis demonstrated that the performance of the system could be further improved at higher yields of hydrogen. Although the system significantly outperformed fossil-based gasoline and hydrogen production pathways, the integrated nuclear and thermochemical cycle still requires significant research and development before commercialization is possible.  相似文献   

18.
A two-stage process using aqueous ammonia and hot-water has been investigated to fractionate corn stover. To maximize hemicelluloses recovery and purity in the liquid hydrolyzate by optimizing the fractionation process, the experiments were carried out employing response surface methodology (RSM). A central composite design (CCD) was used to evaluate and confirm the effectiveness and interactions of factors. The optimal fractionation conditions were determined to be as follow: (1) First-stage reactor operated in batch mode using a 15% NH4OH solution (wNH3 = 15%) at 1:10 solid:liquid ratio, 60 °C, and 24 h; (2) second stage percolation reactor operated using hot-water at 20 cm3 min−1, 200 °C, and 10 min.The model predicted 51.5% xylan recovery yield and 82.4% xylan purity under these conditions. Experiments confirmed the maximum xylan recovery yield and purity were 54.7% and 83.9% respectively under the optimal reaction conditions.With the solids resulting from the two-stage treatment, 87%-98% glucan digestibilities were obtained with 15 FPU of GC 220 per g-glucan and 30 CBU of Novo 188 per g-glucan enzyme loadings. Xylan digestibility of xylooligomer hydrolysates reached 76% with 8000 GXU per g-xylan of Multifect-Xylanase loading. In the simultaneous saccharification and fermentation (SSF) test using treated solids and Saccharomyces cerevisiae (D5A), 86 % to 98% of ethanol yield was obtained on the basis of the glucan content in the treated solids.  相似文献   

19.
The inhomogeneity of corn stover and its effects on bioconversion   总被引:1,自引:0,他引:1  
Compared with wood, corn stover (CS) is a low-value raw material. Traditionally, CS is used in whole. To develop a CS high-value utilization process, the inhomogeneity of CS and its effects on bioconversion were investigated. The results showed that the chemical compositions of parts from CS had a remarkable difference. The Standard Deviation of cellulose, hemicellulose, Klason lignin, ash of CS parts (leaf, shell, core, node) were 3.09, 9.29, 3.32 and 4.58, respectively. The percents of fiber cell, parenchyma cell, epidermis cell and vessel cell were 30%, 30%, 10%, 30% (in leaf), 50%, 20%, 25%, 5% (in shell), 30%, 60%, 10% and 0% (in core), respectively. The inhomogeneity of CS chemical compositions and cell types affects its enzymatic hydrolysis and fermentation performances. The cellulose enzymatic hydrolysis ratio of corn core at 48 h was 130% higher than the leaf. After 7 d solid state fermentation, the filter paper activity of shell fiber, leaf fiber, core fiber, shell mixed cells, leaf mixed cells and core mixed cells were 40.6, 62.9, 64.1, 67.3, 194.2 and 154.0 IU g−1 dry medium, respectively. The differences proved that the whole utilization process was unsatisfactory and suggested the potential of CS fractionation. Based the results, a pilot scale CS fractionation process (CS- Steam explosion-Water washing-Mechanical fiber fractionation-fiber cell and miscellaneous cells) was tested and divided corn stover into fiber cell and miscellaneous cells in the ratio of 1:1 approximately. The study showed the essentiality of CS fractionation and feasibility of fractionation by a simple method.  相似文献   

20.
This study aims to provide a comprehensive environmental life cycle assessment of heat and power production through solid oxide fuel cells (SOFCs) fueled by various chemical feeds namely; natural gas, hydrogen, ammonia and methanol. The life cycle assessment (LCA) includes the complete phases from raw material extraction or chemical fuel synthesis to consumption in the electrochemical reaction as a cradle-to-grave approach. The LCA study is performed using GaBi software, where the selected impact assessment methodology is ReCiPe 1.08. The selected environmental impact categories are climate change, fossil depletion, human toxicity, water depletion, particulate matter formation, and photochemical oxidant formation. The production pathways of the feed gases are selected based on the mature technologies as well as emerging water electrolysis via wind electricity. Natural gas is extracted from the wells and processed in the processing plant to be fed to SOFC. Hydrogen is generated by steam methane reforming method using the natural gas in the plant. Methanol is also produced by steam methane reforming and methanol synthesis reaction. Ammonia is synthesized using the hydrogen obtained from steam methane reforming and combined with nitrogen from air in a Haber-Bosch plant. Both hydrogen and ammonia are also produced via wind energy-driven decentralized electrolysis in order to emphasize the cleaner fuel production. The results of this study show that feeding SOFC systems with carbon-free fuels eliminates the greenhouse gas emissions during operation, however additional steps required for natural gas to hydrogen, ammonia and methanol conversion, make the complete process more environmentally problematic. However, if hydrogen and ammonia are produced from renewable sources such as wind-based electricity, the environmental impacts reduce significantly, yielding about 0.05 and 0.16 kg CO2 eq., respectively, per kWh electricity generation from SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号