首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孟英芹  赵晓兵  李霞章 《化工学报》2013,64(7):2679-2686
以凹凸棒石(ATP)为载体,Ce(NO3)3·6H2O和Ti(OBu)4为原料,冰醋酸为抑制剂,采用溶胶-凝胶法制备CeO2-TiO2/ATP纳米复合材料。利用TG-DSC、TEM、XRD和N2吸附/脱附仪对复合材料进行表征,考察铈钛摩尔比对所制备样品催化降解罗丹明B溶液性能的影响。结果表明,当Ce/Ti≥5/5时,具有立方萤石结构的氧化物颗粒以固溶体形式均匀分布在ATP表面,颗粒尺寸约5~10 nm;随Ti4+的进一步增加,样品中的CeO2结晶不完全;当Ce/Ti<3/7时,样品中出现锐钛矿型TiO2的分离相。适量的Ti4+掺杂能促进CeO2产生较多的结构缺陷,有利于增加晶格氧空位的浓度,提高样品的催化活性。对罗丹明B的催化降解实验表明,当Ce/Ti=5/5时,样品的催化性能较好,对罗丹明B溶液的化学需氧量(COD)去除率可达96%以上。  相似文献   

2.
以SiO2溶胶作内核,分别以(NH4)2Ce(NO3)6、CO(NH2)2混合溶液与Ce(NO3)3·6H2O、HMT混合溶液作壳层前驱体,均相沉淀工艺制备了两种不同的CeO2/SiO2复合磨粒.利用XRD、TEM和FF-IR对比了两种磨粒的物相组成、纳米形貌和化学结构,并对包覆机理进行了解释;结果表明:以(NH4)2Ce(NO3)6、CO(NH2)2为原料制备的CeO2/SiO2复合磨粒包覆程度低;以Ce(NO3)3·6H2O、HMT为原料制备的CeO2/SiO2复合磨粒为壳-核包覆结构完整的纳米微球,粒径约110 nm,核层为无定形SiO2,壳层为立方萤石型CeO2颗粒,CeO2壳层与SiO2内核之间存在Si-O-Ce化学键,形成了稳定的壳核结构.  相似文献   

3.
桑园  王雷妮  罗婧婧  鲁飞  蒋炎  孟凡明 《硅酸盐通报》2012,31(4):913-915,930
本文简要概述了近年来国内外学者关于CeO2蓝移现象起源的研究成果,主要包括量子尺寸效应,Ce3+和Ce4+间价态转变、稀土离子掺杂、由电子-声子耦合产生的界面极子效应等原因。这对研究CeO2的紫外吸收性能具有十分重要的作用。  相似文献   

4.
Temperature-programmed techniques were employed to investigate the interaction of CO with CuO–CeO2 prepared by the urea-nitrates combustion method. These catalysts exhibited high and stable CO oxidation activity at relatively low reaction temperatures (< 150 °C). The CO adsorption capacity and catalytic activity of the catalysts was analogous to the concentration of easily-reduced copper oxide surface species. TPD and TPSR results can be explained by a dual scheme of CO adsorption: (i) on oxidized sites, which get reduced with simultaneous formation of surface CO2 and (ii) on reduced sites created by the former interaction. 10–20% of adsorbed CO desorbs molecularly in the absence of gas-phase O2, but reacts totally towards CO2 in the presence of gas-phase O2. Inhibition by CO2 observed under steady-state CO oxidation conditions is due to CO2 adsorption as found by CO2-TPD.  相似文献   

5.
二氧化铈具有紫外光吸收能力,以其为载体,通过光催化还原沉积可实现贵金属负载。本研究通过光催化还原沉积制备了氨氧化用Pt/CeO_2催化剂,利用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、透射电镜(TEM)、BET比表面积、电耦合高频等离子发射光谱(ICP)、X射线光电子能谱(XPS)、NH_3-程序升温脱附(NH_3-TPD)对样品的物理性质进行了表征,并在φ4 mm×2 mm石英反应管中对其氨催化氧化性能进行了评价。结果表明,该法制备的Pt/CeO_2催化剂活性组分铂含量仅为0.079 7%,在载体表面分散性好;在反应温度800℃,原料中O_2和NH_3比为15的条件下,氨转化率为100%,氮氧化合物收率可达80%。  相似文献   

6.
Molten salt mixtures have been tested in a redox mode as catalysts for the activation of methane at 750 °C. It is found that after pre-treatment with dioxygen a transition metal halide/ sodium vanadate melt can convert methane selectively to C2+ products in the absence of molecular oxygen. The melt can be reactivated by passing dioxygen. Electron paramagnetic resonance studies of the quenched samples showed that the transition metal ions are reduced by methane and can be reoxidised by dioxygen. It is also found that higher C2+ selectivity, C2+ yield and C2H4/C2H6 ratio are promoted by added transition metal chlorides and, surprisingly, also by the corresponding metal bromides. It supports the suggestion that surface modification by halogen is more important than gas radical reactions. Comparison of the molten mixtures under redox and cofeed conditions showed that the former gave a higher C2+ selectivity, but no oxygenated products whereas formaldehyde was only detected in the cofeed conditions.  相似文献   

7.
谢非  李静  晋冠平 《化工进展》2016,35(1):182-188
采用超声辅助共沉淀法,制备了二氧化铈/钙铝水滑石/活性炭复合材料(CeO2/CaAl-LDHs/AC)。通过场发射扫描电子显微镜、X射线衍射、X射线光电子能谱、傅里叶变换红外光谱和热重分析技术,对CeO2/CaAl-LDHs/AC的形貌、组成和结构进行了表征。结果发现:花样片层状的CeO2/CaAl-LDHs材料均匀地分布在活性炭上。考察了CeO2/CaAl-LDHs/AC对水溶液中铬(Ⅵ)、铅(Ⅱ)、氟和孔雀绿的吸附性能。此类污染物的吸附过程均符合准二阶动力学模型和Langmuir等温模型;在pH=7、45℃和吸附时间2h条件下,CeO2/CaAl-LDHs/AC可成功用于铬(Ⅵ)、铅(Ⅱ)、氟和孔雀绿的吸附去除,最大吸附量分别为83.06mg/g、131.58mg/g、61.20mg/g和420.17mg/g。  相似文献   

8.
采用简单的改变焙烧气氛的方法改变水热法合成的CeO2纳米材料的形貌,得到的CeO2纳米材料再通过浸渍法制备CuO/CeO2催化剂,并将其应用于甲醇水蒸汽重整制氢反应。采用SEM、XRD、BET、H2-TPR、N2O滴定和XPS等对催化材料进行了表征,着重探讨了氧化铈形貌对催化剂结构、性质和性能的影响。结果表明,纳米棒状结构的CeO2负载CuO后得到的CuO/CeO2催化剂性能最佳,这主要是因为纳米棒状结构的CeO2与CuO的相互作用较强,表面存在较多的晶格缺陷和氧空穴,进而使得CuO/CeO2催化剂表相Cu含量增加,Cu物种的还原温度较低,催化活性较好。当反应温度为260 °C、水醇物质的量比为1.2、甲醇气体空速为800 h-1时,甲醇转化率可达100%,重整气中CO摩尔含量为0.16%。  相似文献   

9.
A series of Ce1-xCuxO2- mixed oxides were synthesized using a co-precipitation method and tested as catalysts for the steam reforming of methanol. XRD patterns of the Ce1-xCuxO2- mixed oxides indicated that Cu2+ ions were dissolved in CeO2 lattices to form a solid solution by calcination at 773K when x < 0.2. A TPR (temperature-programmed reduction) investigation showed that the CeO2 promotes the reduction of the Cu2+ species. Two reduction peaks were observed in the TPR profiles, which suggested that there were two different Cu2+ species in the Ce1-xCuxO2- mixed oxides. The TPR peak at low temperature is attributed to the bulk Cu2+ species which dissolved into the CeO2 lattices, and the peak at high temperature is due to the CuO species dispersed on the surface of CeO2. The Ce1-xCuxO2- mixed oxides were reduced to form Cu/CeO2 catalysts for steam reforming of methanol, and were compared with Cu/ZnO, Cu/Zn(Al)O and Cu/AL2O3 catalysts. All the Cu-containing catalysts tested in this study showed high selectivities to CO2 (over 97%) and H2. A 3.8wt% Cu/CeO2 catalyst showed a conversion of 53.9% for the steam reforming of methanol at 513K (W/F = 4.9 g h mol-1), which was higher than that over Cu/ZnO (37.9%), Cu/Zn(Al)O (32.3%) and Cu/AL2O3 (11.2%) with the same Cu loading under the same reaction conditions. It is likely that the high activity of the Cu/CeO2 catalysts may be due to the highly dispersed Cu metal particles and the strong metalsupport interaction between the Cu metal and CeO2 support. Slow deactivations were observed over the 3.8wt% Cu/CeO2 catalyst at 493 and 513K. The activity of the deactivated catalysts can be regenerated by calcination in air at 773K followed by reduction in H2 at 673K, which indicated that a carbonaceous deposit on the catalyst surface caused the catalyst deactivation. Using the TPO (temperature-programmed oxidation) method, the amounts of coke on the 3.8wt% Cu/CeO2 catalyst were 0.8wt% at 493K and 1.7wt% at 513K after 24h on stream.  相似文献   

10.
采用改进的Hummer法制备氧化石墨(GO),以干燥浸泡法制备三维氧化石墨烯(rGO)-Ag/泡沫镍(NF)复合材料,对其物相、形貌和组成进行分析,研究了其电化学性能. 结果表明,复合材料呈疏松多孔结构,Ag颗粒直径为200 nm,电流密度为5 mA/cm2时初次比容量为1.59 F/cm2,循环1000次后为初始容量的70%,循环稳定性良好.  相似文献   

11.
The effects of La3+ incorporation into a Pt/CeO2/Al2O3 catalyst were investigated by a combination of activity, temperature-programmed reduction (TPR), oxygen storage capacity (OSC), noble-metal surface area, and X-ray diffraction (XRD) measurements. Incorporation of La3+ ions into the Al2O3, before CeO2 is added, promoted higher Pt and CeO2 dispersions. The oxygen storage capacity was also higher in the presence of La3+. This is attributed to a combination of Pt and CeO2 particle-size effects and possible blockage of the reaction between Al2O3 and CeO2. The XRD data show that La3+ forms LaAlO3 with Al2O3 and prevents -Al2O3 formation after various heat treatments.  相似文献   

12.
Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.
  相似文献   

13.
ABSTRACT: Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically-modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile hydrophilic one showed that platinum was hardly deposited within the porous layer and a filmy growth of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically-modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effect, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal.  相似文献   

14.
掺杂CeO2基电解质是中低温固体氧化物燃料电池(SOFC)理想的电解质材料。首先阐述了掺杂CeO2基电解质结构与性能的关系,接着介绍了金属离子掺杂对CeO2基电解质晶体结构和电子结构的影响,重点综述了单元素掺杂和双元素掺杂对CeO2基电解质性能的影响。通过分析得出:稀土金属元素单掺杂比碱土金属元素单掺杂更能显著提高CeO2基电解质的导电性和可烧结性,但稀土氧化物的原料成本要远高于碱土氧化物;双元素掺杂比单元素掺杂具有更多的氧空位无序度和更小的氧离子迁移激活能,因此在提高CeO2基电解质的离子电导率方面更有优势。总结了CeO2基电解质材料的掺杂规律及构效关系,以期对制备出性能更加优异的CeO2基电解质起到一定的指导作用。  相似文献   

15.
In this work, methane combustion over Pd/YSZ and Pd/CeO2/YSZ catalyst was investigated at a temperature range of 470–600 °C. For the first time, the feasibility of electrochemical promotion on palladium films prepared by wet impregnation was reported. The catalytic activity of palladium was found to increase over 160% via transference of oxygen ions from the solid electrolyte to the catalyst film. In addition, palladium supported over ceria and yttria-stabilized zirconia showed the highest activity. As expected, the presence of ceria allowed improving the oxygen storage capacity of the catalyst system.  相似文献   

16.
氧化铈对硅橡胶耐热性和耐油性的影响   总被引:4,自引:0,他引:4  
研究了氧化铈用量对硅橡胶耐热性、耐油性的影响.结果表明,随氧化铈用量的增加,硅橡胶的力学性变化较小,但耐热性和高温下的耐油性明显提高;氧化铈的较佳用量为5份.通过热失重分析可知,与未加氧化铈的硅橡胶相比,加入10份氧化铈的硅橡胶在氮气环境下的热分解温度的峰值提高了13℃,在898.7℃时的固体残余质量分数提高11个百分点;在空气中第一阶段热分解温度的峰值提高了25.8℃,第二阶段提高了9.1℃,同时在898.7℃时的固体残余质量分数提高近3个百分点.说明加入氧化铈可提高硅橡胶的热稳定性.  相似文献   

17.
以金属硝酸盐为前驱物,乙二胺四乙酸为助剂,采用正交实验设计和浸渍法制备Cu-Ni、Cu-Fe和Ni-Fe系列TiO_2基双金属氧化物催化剂,通过XRD和H_2-TPR进行表征,评价其氧化还原性能。结果表明,活性组分为Cu和Fe、物质的量比为0.2∶0.2、pH为8.0和400℃焙烧的5#催化剂具有优良的氧化还原性能,起始还原温度148℃条件下,耗氢量达80.72 mmol·g-1。活性组分、物质的量比、pH值和焙烧温度等催化剂制备参数影响氧化还原反应的难易(起始还原温度)和强弱(耗氢量),Cu和Fe物质的量比为0.2∶0.2的催化剂由于协同效应具有最低的起始还原温度和很高的耗氢量。较低物质的量比含Ni活性组分的催化剂由于形成复合金属氧化物固溶体而难以在较低温度被还原,中性或碱性条件下通过氢氧化物脱水生成金属氧化物有助于提高催化剂的耗氢量,400℃足以形成适宜的晶型以提高催化剂氧化还原性能。  相似文献   

18.
Cu2O/Cu composite particles were synthesized by a novel and facile chemical reduction method without any template or surfactant. X-ray diffraction (XRD) results showed that the product mainly consisted of the Cu2O phase coexisting with a few Cu phases. Typical FE-SEM images indicated that the particles with an octahedral shape were Cu2O. In addition, the electrochemical performance of the Cu2O/Cu particles as the working electrode material in alkaline solution was systematically investigated. The particles showed a maximum discharge capacity of 222.9 mAh g−1 at a discharge current density of 60 mA g−1 and a high value of 109.1 mAh g−1 after 50 charge–discharge cycles. The results of cyclic voltammetry demonstrated that the reaction between Cu2O and Cu is the major electrochemical reaction during the charging and discharging process. The results of electrochemical impedance spectroscopy indicated that the formation of Cu2O on the surface of Cu particles significantly increased the contact resistance and the charge transfer resistance of the electrode during the discharging process.  相似文献   

19.
以四水硫酸高铈和七水硫酸锌为原料,碳酸铵为沉淀剂,分别采用直接沉淀法和异相沉淀法合成纳米氧化锌/二氧化铈复合材料。采用XRD,FT-IR和UV-Vis对产物进行表征分析。XRD分析表明,在相同的原料配比下,异相沉淀法合成的复合纳米材料中,铈的含量大于直接沉淀法合成的材料;FT-IR分析表明,异相沉淀法中,由于氧化锌对二氧化铈的表面包覆,样品分散性增加;UV-Vis分析表明,两种方法合成的样品都具有优异的紫外吸收性能,只是波段不同:异相沉淀法合成的产品的紫外吸收侧重于UVA波段,而直接沉淀法合成的产品的紫外吸收侧重于UVC波段。另外水中分散性实验还表明,采用异相沉淀法合成的纳米材料分散性优于前者。  相似文献   

20.
The thermal and mechanical properties of cerium dioxide (CeO2) were assessed using a range of experimental techniques. The oxygen potential of CeO2 was measured by the thermogravimetric technique, and a numerical fit for the oxygen potential of CeO2 is derived based on defect chemistry. Mechanical properties of CeO2 were obtained using sound velocity measurement, resonant ultrasound spectroscopy and nanoindentation. The obtained mechanical properties of CeO2 are then used to evaluate the Debye temperature and Grüneisen constant. The heat capacity and thermal conductivity of CeO2 were also calculated using the Debye temperature and the Grüneisen constant. Finally, the thermal conductivity was calculated based upon laser flash analysis measurements performed on pellets fabricated using a range of feedstock purities to resolve discrepancies in the existing literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号