首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Does group foraging promote efficient exploitation of resources?   总被引:1,自引:0,他引:1  
Guy Beauchamp 《Oikos》2005,111(2):403-407
Increased avoidance of food patches previously exploited by other companions has been proposed as one adaptive benefit of group foraging. However, does group foraging really represent the most efficient way to exploit non- or slowly-renewing resources? Here, I used simulations to explore the costs and benefits of exploiting non-renewing resources by foragers searching for food patches independently or in groups in habitats with different types of resource distribution. Group foragers exploited resources in a patch more quickly and therefore spent proportionately more time locating new patches. Reduced avoidance of areas already exploited by others failed to overcome the increased time cost of searching for new food patches and group foragers thus obtained food at a lower rate than solitary foragers. Group foraging provided one advantage in terms of a reduction in the variance of food intake rate. On its own, reduced avoidance of exploitation competition through group foraging appears unlikely to increase mean food intake rate when exploiting non-renewing patches but may provide a way to reduce the risk of an energy shortfall.  相似文献   

2.
Effect of Group Size on Feeding Rate when Patches are Exhaustible   总被引:1,自引:1,他引:0  
One benefit of group foraging is that individual foragers can join the food discoveries of companions and thus increase encounter rate with food patches. When food patches are exhaustible, however, individual shares of each patch will decrease with group size negating the effect of increased encounter rate. Mean feeding rate may actually decrease with group size as a result of aggression or time wasted joining already depleted patches, or when searching to join the food discoveries of others, which is referred to as scrounging, precludes finding food. I examined the relationship between mean feeding rate and group size in captive flocks of zebra finches (Taenopygia guttata) foraging for small clumps of seeds. Finches in groups of two or four fared better than solitary birds in terms of mean feeding rate despite the fact that birds in groups scrounged a large proportion of their food. Solitary birds initiated feeding activity after a longer delay, which led to their lower success. Early departures by food finders from food patches joined by others may have lessened the impact of scrounging on mean feeding rate. As a result of benefits from the presence of companions, group foraging in zebra finches appears a viable alternative to foraging alone despite the cost of sharing resources.  相似文献   

3.
In flocks, individuals can search for their own food using the producer tactic or exploit the discoveries of companions using the scrounger tactic. Models of the producer–scrounger game usually assume that tactic payoffs are independent of individual phenotypic traits. However, factors such as dominance status or foraging efficiency may constrain the use of tactics and lead to asymmetric tactic use among individuals. For instance, in flocks composed of foragers with unequal foraging efficiency, foragers that are less efficient at obtaining food are expected to rely on the scrounger tactic to a greater extent. I examined the role of foraging efficiency and dominance status as potential correlates of scrounging behavior in small aviary flocks of zebra finches (Taenopygia guttata). Individual foraging efficiency was documented in each flock in a treatment that prevented scrounging. In a subsequent treatment that allowed scrounging, higher levels of scrounging occurred as predicted in foragers with lower foraging efficiency. Dominance status was a poor predictor of tactic choice. Birds that arrived later on the foraging grid foraged less efficiently when scrounging was prevented and used scrounging to a greater extent when allowed, suggesting a link between boldness, foraging efficiency and the choice of foraging tactics in small flocks of zebra finches.  相似文献   

4.
The behaviour of animals foraging along closed traplines of regenerating patches of food has been simulated using a learning rule that determines when an animal should leave the patch at which it is currently feeding to search for another one. The rule causes the animal to stay at the patch as long as it is feeding faster than it remembers doing. The foraging behaviour of one animal, and of two or more animals together, feeding in traplines containing patches of the same and of differing types has been simulated, and in all cases the foraging behaviour generated by the rule allowed the animals to exploit the food very efficiently. The learning model is also responsible for indirect social interactions among animals sharing the same trapline because the feeding of each animal reduces the availability of food for the others. This causes a population of animals to disperse themselves, on average, among patches of food according to the ideal free distribution. The relationship between the learning model and conventional optimal foraging models is examined and it is shown that it is pointless to try to account for learned behaviour in the context of optimal foraging theory.  相似文献   

5.
The ideal free distribution (IFD) predicts that optimal foragers will select foraging patches to maximize food rewards and that groups of foragers should thus be distributed between food patches in proportion to the availability of food in those patches. Because many of the underlying mechanisms of foraging are temperature dependent in ectotherms, the distribution of ectothermic foragers between food patches may similarly depend on temperature because the difference in fitness rewards between these patches may change with temperature. We tested the hypothesis that the distribution of Common Gartersnakes (Thamnophis sirtalis) between food patches can be explained by an IFD, but that conformance to an IFD weakens as temperature departs from the optimal temperature because fitness rewards, interference competition and the number of individuals foraging are highest at the optimal temperature. First, we determined the optimal temperature for foraging. Second, we examined group foraging at three temperatures and three density treatments. Search time was optimized at 27°C, handling time at 29°C and digestion time at 32°C. Gartersnakes did not match an IFD at any temperature, but their distribution did change with temperature: snakes at 20°C and at 30°C selected both food patches equally, while snakes at 25°C selected the low food patch more at low density and the high food patch more at high density. Food consumption and competition increased with temperature, and handling time decreased with temperature. Temperature therefore had a strong impact on foraging, but did not affect the IFD. Future work should examine temperature‐dependent foraging in ectotherms that are known to match an IFD.  相似文献   

6.
BarbaraMoser  MartinSchütz 《Oikos》2006,114(2):311-321
Classical foraging theory states that animals feeding in a patchy environment can maximise their long term prey capture rates by quitting food patches when they have depleted prey to a certain threshold level. Theory suggests that social foragers may be better able to do this if all individuals in a group have access to the prey capture information of all other group members. This will allow all foragers to make a more accurate estimation of the patch quality over time and hence enable them to quit patches closer to the optimal prey threshold level. We develop a model to examine the foraging efficiency of three strategies that could be used by a cohesive foraging group to initiate quitting a patch, where foragers do not use such information, and compare these with a fourth strategy in which foragers use public information of all prey capture events made by the group. We carried out simulations in six different prey environments, in which we varied the mean number of prey per patch and the variance of prey number between patches. Groups sharing public information were able to consistently quit patches close to the optimal prey threshold level, and obtained constant prey capture rates, in groups of all sizes. In contrast all groups not sharing public information quit patches progressively earlier than the optimal prey threshold value, and experienced decreasing prey capture rates, as group size increased. This is more apparent as the variance in prey number between patches increases. Thus in a patchy environment, where uncertainty is high, although public information use does not increase the foraging efficiency of groups over that of a lone forager, it certainly offers benefits over groups which do not, and particularly where group size is large.  相似文献   

7.
The majority of species of flowering plants rely on pollination by insects, so that their reproductive success and in part their population structure are determined by insect behaviour. The foraging behaviour of insect pollinators is flexible and complex, because efficient collection of nectar or pollen is no simple matter. Each flower provides a variable but generally small reward that is often hidden, flowers are patchily distributed in time and space, and are erratically depleted of rewards by other foragers. Insects that specialise in visiting flowers have evolved an array of foraging strategies that act to improve their efficiency, which in turn determine the reproductive success of the plants that they visit. This review attempts a synthesis of the recent literature on selectivity in pollinator foraging behaviour, in terms of the species, patch and individual flowers that they choose to visit.

The variable nature of floral resources necessitate foraging behaviour based upon flexible learning, so that foragers can respond to the pattern of rewards that they encounter. Fidelity to particular species allows foragers to learn appropriate handling skills and so reduce handling times, but may also be favoured by use of a search image to detect flowers. The rewards received are also used to determine the spatial patterns of searches; distance and direction of flights are adjusted so that foragers tend to remain within rewarding patches and depart swiftly from unrewarding ones. The distribution of foragers among patchy resources generally conforms to the expectations of two simple optimal foraging models, the ideal free distribution and the marginal value theorem.

Insects are able to learn to discriminate among flowers of their preferred species on the basis of subtle differences in floral morphology. They may discriminate upon the basis of flower size, age, sex or symmetry and so choose the more rewarding flowers. Some insects are also able to distinguish and reject depleted flowers on the basis of ephemeral odours left by previous visitors. These odours have recently been implicated as a mechanism involved in interspecific interactions between foragers.

From the point of view of a plant reliant upon insect pollination, the behaviour of its pollinators (and hence its reproductive success) is likely to vary according to the rewards offered, the size and complexity of floral displays used to advertise their location, the distribution of conspecific and of rewards offered by other plant species, and the abundance and behaviour of other flower visitors.  相似文献   


8.
When engaged in behavioural games, animals can adjust their use of alternative tactics until groups reach stable equilibria. Recent theory on behavioural plasticity in games predicts that individuals should differ in their plasticity or responsiveness and hence in their degree of behavioural adjustment. Moreover, individuals are predicted to be consistent in their plasticity within and across biological contexts. These predictions have yet to be tested empirically and so we examine the behavioural adjustment of individual nutmeg mannikins (Lonchura punctulata), gregarious ground-feeding passerines, when playing two different social foraging games: producer-scrounger (PS) and patch-choice (PC) games. We found: (i) significant individual differences in plasticity and sampling behaviour in each of the two games, (ii) individual differences in sampling behaviour were consistent over different test conditions within a game (PC) and over a six month period (PS), (iii) but neither individual plasticity nor sampling behaviour was correlated from one social foraging game to another. The rate at which birds sampled alternative tactics was positively associated with seed intake in PS trials but negatively associated in PC trials. These results suggest that games with frequency dependence of pay-offs can maintain differences in behavioural plasticity but that an important component of this plasticity is group- and/or context-specific.  相似文献   

9.
If the cognitive performance of animals reflects their particular ecological requirements, how can we explain appreciable variation in learning ability amongst closely related individuals (e.g. foraging workers within a bumble bee colony)? One possibility is that apparent ‘errors’ in a learning task actually represent an alternative foraging strategy. In this study we investigate the potential relationship between foraging ‘errors’ and foraging success among bumble bee (Bombus terrestris) workers. Individual foragers were trained to choose yellow, rewarded flowers and ignore blue, unrewarded flowers. We recorded the number of errors (visits to unrewarded flowers) each bee made during training, then tested them to determine how quickly they discovered a more profitable food source (either familiar blue flowers, or novel green flowers). We found that error prone bees discovered the novel food source significantly faster than accurate bees. Furthermore, we demonstrate that the time taken to discover the novel, more profitable, food source is positively correlated with foraging success. These results suggest that foraging errors are part of an ‘exploration’ foraging strategy, which could be advantageous in changeable foraging environments. This could explain the observed variation in learning performance amongst foragers within social insect colonies.  相似文献   

10.
The group-size paradox: effects of learning and patch departure rules   总被引:3,自引:2,他引:1  
In many species, foraging in groups can enhance individual fitness.However, groups are often predicted to be larger than the sizethat maximizes individual fitness. This is because individualforagers are expected to continue joining a group until thefitness in the group falls to the level experienced by solitaryforagers. If such a process were pervasive, social foraging,paradoxically, would provide little evolutionary advantages.We propose a solution to the group-size paradox by allowingforagers to learn about habitat quality and leave food patcheswhen their current intake rate falls below that expected forthe whole habitat. By using a simulation model, we show thatunder a wide range of population sizes, foragers using suchrules abandon under- and overcrowded patches, ensuring thatgroup size remains close to the optimal value. The results holdin habitats with varying patch quality, but we note that thelack of food renewal in patches can disrupt the process of groupformation. We conclude that groups of optimal sizes can occurfrequently if fitness functions are peaked and resources patchilydistributed, without the need to invoke relatedness betweenjoiners and established group members, group defense againstjoiners, or other mechanisms that were proposed earlier to preventgroups from becoming too large.  相似文献   

11.
Gauvin S  Giraldeau LA 《Oecologia》2004,139(1):150-156
Group feeding animals experience a number of competitive foraging costs that may result in a lowered feeding rate. It is important to distinguish between reductions in feeding rates that are caused by reduced food availability and physical interactions among foragers from those caused by the mere presence of foraging companions that may be self-imposed in order to obtain some benefit of group membership. Starlings (Sturnus vulgaris) reduce their feeding rates when in the company of simulated competitors located in an adjacent cage that cannot affect the food availability or interact with the forager. In the present study, we investigate whether the presence of simulated competitors in another species of passerine, nutmeg mannikins (Lonchura punctulata), can result in self-imposed reductions in feeding rates. When feeding in the company of simulated competitors, mannikins spent more non-foraging time near them, fed more slowly, reduced travel times between patches, reduced their scanning time and pecked more slowly. These results provide evidence that simulated competitors induce a reduction in pecking rate: behavioural interference. These self-imposed responses to competitors may have resulted from attempts to remain close to the non-feeding companions. Such self-imposed reductions in feeding rates may be a widespread yet generally unrecognised foraging cost to group feeding individuals.  相似文献   

12.
Grouping in animals is ubiquitous and thought to provide group members antipredatory advantages and foraging efficiency. However, parasitic foraging strategy often emerges in a group. The optimal parasitic policy has given rise to the producer-scrounger (PS) game model, in which producers search for food patches, and scroungers parasitize the discovered patches. The N-persons PS game model constructed by Vickery et al. (1991. Producers, scroungers, and group foraging. American Naturalist 137, 847-863) predicts the evolutionarily stable strategy (ESS) of frequency of producers that depends on the advantage of producers and the number of foragers in a group. However, the model assumes that the number of discovered patches in one time unit never exceeds one. In reality, multiple patches could be found in one time unit. In the present study, we relax this assumption and assumed that the number of discovered patches depends on the producers’ variable encounter rate with patches (λ). We show that strongly depends on λ within a feasible range, although it still depends on the advantage of producer and the number of foragers in a group. The basic idea of PS game is the same as the information sharing (parasitism), because scroungers are also thought to parasitize informations of locations of food patches. Horn (1968) indicated the role of information-parasitism in animal aggregation (Horn, H.S., 1968. The adaptive significance of colonial nesting in the Brewer's blackbird (euphagus cyanocephalus). Ecology 49, 682-646). Our modified PS game model shows the same prediction as the Horn's graphical animal aggregation model; the proportion of scroungers will increase or animals should adopt colonial foraging when resource is spatiotemporally clumped, but scroungers will decrease or animals should adopt territorial foraging if the resource is evenly distributed.  相似文献   

13.
Harvesting resources in groups or alone: the case of renewing patches   总被引:1,自引:1,他引:0  
Group foraging has been proposed to be the most efficient mannerwith which to exploit habitats with renewing patches as individualsin groups are less likely to revisit patches that have alreadybeen exploited recently by others. However, to avoid a group-selectionargument, it is necessary to compare the success of solitaryand group foraging tactics when each competes with the other.We used a genetic algorithm approach to examine the costs andbenefits of exploiting renewing resources in a spatially andtemporally explicit habitat, thus controlling the time courseof resource renewal and including the time cost of travelingbetween patches, which may be a significant factor for groupforagers that deplete patches more quickly. Results indicatethat group foragers fare more poorly than an equivalent numberof solitary foragers in the same habitat unless the rate ofresource renewal is very low. The low revisitation rate by groupforagers allows resources to replenish more fully, thus maintainingthe resource level across the habitat at a higher level. Incontrast, solitary foragers, who revisit previously exploitedpatches more often, maintain the same resources at a lower level.Nevertheless, a pure population of group foragers can be readilyinvaded by solitary foragers even when the rate of renewal isat low levels. We conclude that while group foraging may bean efficient tactic to exploit renewing resources, it is nota stable strategy under the circumstances examined in this model.  相似文献   

14.
Although many group-foraging models assume that all individuals search for and share their food equally, most documented instances of group foraging exhibit specialized use of producer and scrounger strategies. In addition, many of the studies have focused on groups with strong individual asymmetries exploiting food that is not easily divisible. In the present study we describe individual foraging behavior of relatively nonaggressive flock foragers exploiting divisible clumps of food. Two experiments, one with flocks of spice finches and another with flocks of zebra finches, suggest that divisibility of food patches may have important consequences for social foraging behavior. Neither dominance nor the distribution and quality of food patches affect the relative advantage that producing individuals enjoy over those that scrounge. Specialized producers and scroungers are absent from flocks of both species. Systems where patches are shared may differ fundamentally from those where patches are monopolized by scroungers.  相似文献   

15.
AMY JANSEN 《Ibis》1990,132(1):95-101
Age-related differences in foraging efficiency and behaviour were investigated in a population of colour-ringed Silvereyes Zosterops lateralis . First-year birds were less efficient foragers than older birds with second-year birds being intermediate. First- and second-year birds had lower success rates than older birds overall, and for most capture techniques and substrates. First-year birds never attempted breeding while about half of the second-year birds and all of the older birds did. Both learning and selection effects may have been involved in causing the age-related differences in foraging behaviour. Foraging skills appear to improve during the first 2 years of life and selection could remove the least efficient foragers from the population in winter when food is short. That second-year birds, some of which had already attempted breeding, were not significantly more efficient foragers than first-year birds suggests that reproduction is not delayed until adult levels of foraging efficiency have been attained.  相似文献   

16.
We extend the game theoretic model of kleptoparasitism discussed in Broom et al. (2004), by considering a population of foragers consisting of two groups with different behaviours—those who forage and steal from other feeders, and those who only forage. We a sume that those who do not steal have a better foraging rate than those who are also looking out for opportunities to steal. We also allow either type to resist an attack or not resist. We look for Evolutionary Stable States, of either a mixture of the two behaviours, or where the whole population has just one of these behaviours. We find nine such ESS’s, dependent on the environmental parameters, although in fact only five of these are distinguishable. In general, we find that if the overall population density is low, food-stealing becomes less viable, and there is an ESS consisting of only foragers. Conversely, when there are many animals looking for, and finding, food, there is an ESS consisting of just kleptoparasites (which are also foraging). In between, an ESS will contain both pure-foragers and stealers. There is some empirical evidence of such behaviours. We find that when there is a mixture of the two types, they must both have the same resistive behaviour. We can thus have some individuals challenging for food but not resisting challenges, and others not challenging and not resisting. This shows how aggressive behaviour may be context-dependent, as seen in practice.  相似文献   

17.
In many altricial birds, fledglings disperse when they are no longer fed, and this dispersal marks the end of parental care. In some species, however, young remain in close association with their parents after nutritional independence. Because juveniles are still inferior foragers at this stage, they might benefit from parental assistance in locating good feeding sites, but this possibility remains largely unexplored. Here, we show that parents and helpers in pied babbler (Turdoides bicolor) societies use a recruitment call to direct nutritionally independent, but inexperienced, foragers to particular food patches. Observations and a playback experiment indicated that adult babblers use a "purr" call to recruit group members to a foraging patch. Creation of experimental foraging patches supported observations that individuals tend to give the call when they are foraging on abundant, divisible food sources and when their group contains independent fledglings (youngsters who are no longer fed directly). Fledglings responded to calls more often than adults, who frequently encountered aggression from the caller if they did, and the fledglings gained significant foraging benefits. This is the first study to demonstrate that altricial birds may use recruitment calls to extend parental care past the period of direct provisioning.  相似文献   

18.
Depletion of experimental seed patches by granivorous animals often is used as a qualitative assay of foraging activity. An optimal foraging model suggests that seed amounts remaining when foragers leave patches ("giving-up-density", GUD) also provide quantitative measures of foraging economics, diet strategies and foraging abilities. Such quantitative uses of GUDs rest on several largely untested assumptions. We tested two of these with Merriam's kangaroo rats: that gain curves are smoothly decelerating, and that foragers leave patches at a constant harvest rate. Harvest rates indeed declined with patch residence time, but in the piecewise linear fashion expected of systematic search. Animals also revisited areas within patches less frequently than expected with random search. In the field, they depleted patches in multiple visits and did not use a constant-rate leaving rule. These deviations from model assumptions cast doubt on inferences about foraging ecology that have been based on quantitative GUD theory.  相似文献   

19.
Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.  相似文献   

20.
It is well established that social conditions often modify foraging behaviour, but the theoretical interpretation of the changes produced is not straightforward. Changes may be due to alterations of the foraging currency (the mathematical expression that behaviour maximizes) and/or of the available resources. An example of the latter is when both solitary and social foragers maximize rates of gain over time, but competition alters the behaviour required to achieve this, as assumed by ideal free distribution models. Here we examine this problem using captive starlings Sturnus vulgaris. Subjects had access to two depleting patches that replenished whenever the alternative patch was visited. The theoretical rate-maximizing policy was the same across all treatments, and consisted of alternating between patches following a pattern that could be predicted using the marginal value theorem (MVT). There were three treatments that differed in the contents of an aviary adjacent to one of the two patches (called the 'social' patch). In the control treatment, the aviary was empty, in the social condition it contained a group of starlings, and in a non-specific stimulus control it contained a group of zebra finches. In the control condition both patches were used equally and behaviour was well predicted by the MVT. In the social condition, starlings foraged more slowly in the social than in the solitary patch. Further, foraging in the solitary patch was faster and in the social patch slower in the social condition than in the control condition. Although these changes are incompatible with overall rate maximization (gain rate decreased by about 24% by self-imposed changes), if the self-generated gain functions were used the MVT was a good predictor of patch exploitation under all conditions. We discuss the complexities of nesting optimal foraging models in more comprehensive theoretical accounts of behaviour integrating functional and mechanistic perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号