首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
利用高温高压冷凝釜模拟油气田湿天然气CO2腐蚀环境,进行了不同气体温度、湿气-管壁温差的湿气冷凝腐蚀实验,研究了温度对X70钢腐蚀形态、速率的变化规律.利用扫描电镜和能谱仪,分析了腐蚀产物膜的微观形貌和成分,并与高温高压釜中全水相实验结果进行了对比.建立了湿气管道腐蚀预测模型,初步探讨了湿气温度、管壁温度、温差、液膜温度和冷凝率等重要湿气参数对湿气顶部腐蚀的影响.结果表明:在相同管壁温度(5℃)下,湿气温度升高使X70管线钢腐蚀速率升高;在相同的湿气温度(25℃和45℃)下,X70钢的腐蚀速率随管壁温度的升高而略有下降;在20~45℃范围内,腐蚀产物膜与基体的结合较弱,极易从基体剥落,腐蚀形态均为全面腐蚀.  相似文献   

2.
试验用X70管线钢(/%:0.12C、0.20Si、1.60Mn、0.005P、0.005S、0.10V、0.10Nb、0~0.15RE)用10kg真空感应炉冶炼。采用电化学和失重分析法研究了微量稀土对X70管线钢在0.1 mol/L Na2SO4水溶液中的腐蚀行为。试验结果表明,微量稀土可降低管线钢腐蚀电流icorr,改善腐蚀形貌。随着稀土加入量的增加,腐蚀电流减小,当钢中的RE含量由0增加至0.10%时腐蚀速率由7.43μg/(cm2.day)降至0.29μg/(cm2.day)。稀土的最适宜加入量是0.10%。  相似文献   

3.
包钢生产的X70管线钢在露天环境中暴露放置3年后,钢管表面腐蚀并不严重,具有类似耐候钢的腐蚀形貌特征,而国内某钢厂生产的X70管线钢在相同环境下放置相同时间后,表面腐蚀较为严重,文章通过采用周期腐蚀试验对包钢生产的X70管线钢与国内某钢厂生产的X70管线钢进行对比分析,研究包钢X70管线钢耐大气腐蚀行为规律。  相似文献   

4.
通过金相显微镜、扫描电镜对厚规格X70管线钢焊接接头进行中性盐雾试验(NSS试验)腐蚀产物形貌进行观察,采用EDS、XRD分别对腐蚀产物进行面扫描和物相分析。结果表明,盐雾腐蚀过程先发生点蚀,点蚀逐步发展成全面腐蚀。Cl-引起点蚀,点蚀导致裂纹的产生。腐蚀产物成分均匀,主要由铁的氧化物、氯化物和氢氧化物组成。腐蚀速率随着腐蚀时间的延长变缓慢,腐蚀过程中Cl-易穿过外层疏松的腐蚀产物与基体发生反应,而最内层致密的腐蚀产物膜对腐蚀介质的进一步扩散起到阻挡作用,减缓了反应速率提高了耐蚀性。  相似文献   

5.
6.
通过对X70管线钢在存储过程中表面出现点蚀的问题进行分析,确定了钢板表面结构的不均匀性、离线探伤用水中含有氯离子及离线探伤用水在钢板表面残留时间过长是引起点蚀的主要原因。根据X70管线钢生产的特点和存储条件,提出了解决在存储过程中产生表面点蚀的方案,取得了较好的效果。  相似文献   

7.
利用高温高压H2S反应釜进行腐蚀模拟实验,研究X60钢在高压H2S/CO2共存条件下的腐蚀规律,并利用扫描电子显微镜和X射线衍射等方法观察用分析了腐蚀产物膜的形貌和组成.在H2S/CO2分压比为1.74、H2S分压0.15~2.0 MPa条件下,腐蚀产物以硫铁化合物为主,未见碳酸亚铁,X60钢腐蚀过程由H2S控制.H2S分压较低时腐蚀产物以四方FeS1-x为主,H2S分压2.0 MPa时则出现六方FeS、六方Fe1-xS和立方FeS2.疏松的富S腐蚀产物及腐蚀产物膜局部剥落促使高H2S分压时X60钢出现明显局部腐蚀,并使全面腐蚀速率随H2S分压升高先升后降.  相似文献   

8.
应变速率对X70管线钢应力腐蚀行为的影响   总被引:1,自引:0,他引:1  
 通过波动拉伸载荷试验(F-SSRT),研究了不同应变速率对X70管线钢在阴极电位下近中性介质应力腐蚀开裂(SCC)行为的影响。结果表明:X70钢在特定的近中性介质中,在波动拉伸载荷和阴极电位(-850mVSCE)条件下,存在着一定的SCC敏感性。在波动拉伸载荷试验(F-SSRT)条件下,SCC裂纹的扩展机理与匀速慢拉伸试验(SSRT)时的裂纹扩展机理明显不同,SCC裂纹可以从材料表面产生的微孔处萌生并沿主应力面扩展,当应变速率处于一定范围时,SCC裂纹转变为沿45°最大剪应力面扩展。分析了氢在F-SSRT试样SCC发生发展过程中的作用和机理。  相似文献   

9.
《钢铁》2001,36(6):48-51
在高温高压条件下,对P110,N80,J55三种油管钢在模拟油田CO2环境下的腐蚀性能进行了研究评价,结果表明在静态条件下,三种钢对温度和压力的依赖关系均为类似抛物线规律,P110最不耐蚀。动态条件下对P110钢的进一步研究显示,由于流速的存在,与静态下相比,最高均匀腐蚀速率点向温度和CO2分压升高的方向移动。  相似文献   

10.
通过高温高压动态反应釜实验模拟油田集输管道腐蚀环境,采用腐蚀失重、X射线衍射、扫描电镜和电化学分析等方法,研究了CO2/油/水环境中X65钢的腐蚀行为. 结果表明:不同原油含水率条件下,X65钢CO2腐蚀形态发生改变. 含水率较低(40%~50%)时,原油的浸润作用使X65钢表面发生均匀腐蚀,局部由于原油吸附不均匀出现点蚀特征;含水率在70%~80%之间时,原油对钢表面屏障作用减弱,生成的产物膜厚而疏松、局部脱落引发台地腐蚀;含水率为90%时,台地腐蚀破坏区域扩大,腐蚀加重. 原油可以明显改变腐蚀产物晶体颗粒大小、堆垛方式、产物膜结构以及化学成分. 在原油的缓蚀作用下,X65钢CO2腐蚀过程的温度敏感点向低温段移动,出现在50℃左右,腐蚀速率降低区间变宽,X65钢耐蚀性增强.  相似文献   

11.
通过腐蚀失重速率试验、腐蚀形貌特征的扫描电镜观察和X射线衍射分析以及土壤理化性质分析等手段研究了国产Q235钢和X70管线钢在加拿大中南部的山地灰钙土中实地埋样试验一年后的短期腐蚀行为特征.结果发现Q235钢和X70钢的平均腐蚀速率和最大点蚀深度均比较接近,但Q235钢点蚀密度明显高于X70钢;两种钢的腐蚀产物成分类似,均为FeOOH、Fe3O4和Fe2O3的复杂混合物,腐蚀产物层不致密,存在明显的裂纹;两种钢表层土壤中均发现较多的硫酸盐还原菌、硫化菌和异养菌,这些菌群的共同作用能够加速腐蚀产物层下局部腐蚀的发生.  相似文献   

12.
基于国内油气工业管线应用需要,采用控轧控冷工艺,研制了强韧性匹配优良的2%Cr低合金管线钢,并测试了其组织和力学性能.以针状铁素体和多边形铁素体为主的含2%Cr管线钢具有良好的强韧性组合.采用高温高压冷凝釜模拟湿气管线中的CO2顶部腐蚀环境试验方法,研究含2%Cr低合金管线钢的抗CO2顶部腐蚀性能.相较于传统管线钢,添加2%Cr后,其CO2腐蚀产物膜是一层连续、致密的富Cr胶泥状非晶态产物膜,从而提高了其抗CO2顶部腐蚀性能.  相似文献   

13.
利用矩形剥离缝隙模型研究了库尔勒土壤模拟溶液中X70管线钢剥离涂层下的滞留液化学特征以及X70钢腐蚀特征.随着浸泡时间的延长,缝内滞留液的p H值逐渐下降直至稳定.Cl-在缝内滞留液中有不同程度的聚集,其中在缝隙底部的质量浓度最高.SO42-的质量浓度在腐蚀初期表现为随距离增加而降低,到腐蚀后期表现为随距离增加而升高.HCO3-和NO3-的质量浓度从漏点至缝底有小幅降低.阳离子的质量浓度变化不明显.缝内X70钢的腐蚀形貌表现为明显的点蚀,且随距漏点距离的增加,点蚀越严重.  相似文献   

14.
张志慧  顾洋  袁睿  武会宾 《钢铁》2021,56(5):98-104
 为了研究Cr5和Cr7(质量分数/%)钢在CO2-EOR高温高压服役条件下的腐蚀机理,利用高温高压反应釜模拟其腐蚀行为,使用失重法测定了腐蚀速率,采用SEM、EDS、XRD和XPS等手段对腐蚀产物进行了观察与分析,探讨了试验钢在CO2条件下的腐蚀机理,并提出了腐蚀模型。研究结果表明,Cr5钢的腐蚀速率为0.734 75 mm/a,Cr7钢的腐蚀速度为0.217 32 mm/a;腐蚀产物均由外层的FeCO3晶体以及内层的非晶态FeCO3和Cr(OH)3组成;腐蚀初期,产物膜以原位形成和阳极溶解后逐渐沉积两种途径生成;产物完全覆盖基体后,离子在界面处的扩散后沉积成为产物膜生长的主要途径。  相似文献   

15.
通过氢渗透测试、氢扩散模拟以及氢含量测试技术研究X70钢在模拟4 MPa总压,0.2 MPa氢气分压煤制气环境下的充氢过程,并通过冲击韧性测试、裂纹扩展测试以及缺口拉伸和慢应变速率拉伸测试方法,从不同角度分析X70钢母材和焊缝组织在模拟煤制气含氢环境下的力学性能.结果表明,在总压4 MPa,0.2 MPa含氢煤制气环境中,X70钢表面存在吸附氢原子并能扩散进入X70钢内部,达到稳态后内部的可扩散氢质量分数为1.9×10-7;与空气中的原始性能比较,X70钢焊缝和母材的冲击性能、缺口拉伸和慢应变速率拉伸强度、塑性以及材料的损伤容限均未发生下降;在实验煤制气环境中,X70钢具有较低的氢脆风险.  相似文献   

16.
为弄清Mo和Ni元素在低Cr钢耐蚀方面所起的作用,炼制了新型2Cr1Mo2Ni钢,研究其在模拟油田采出液中的腐蚀行为,实验条件为80℃,0.8 MPa CO2分压.利用扫描电镜和能谱分析研究了2Cr1Mo2Ni钢和3Cr钢的腐蚀产物膜微观形貌和成分,测试了高温高压极化曲线和电化学阻抗谱,分析了腐蚀产物膜的生长过程.实验结果表明,Mo和Ni元素在提高抗CO2腐蚀性能方面的作用不及Cr元素.2Cr1Mo2Ni钢腐蚀164 h后,中低频感抗弧消失,腐蚀产物膜开始完全覆盖基体表面;腐蚀240 h后,生成的腐蚀产物膜具有较好的保护性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号